1,220 Clinical Trials for Various Conditions
The objective of this study is to determine the safety, tolerability, and anti-leukemic activity of S227928 as single agent and in combination with venetoclax, and to determine the recommended Phase 2 dose (RP2D) of this combination. The study will begin as a Phase 1 Dose Escalation study to determine the RP2D and then will transition to a Phase 2 Dose Expansion study to assess the efficacy of the selected RP2D. During the treatment period participants will have study visits every two weeks, with additional visits occurring during the first and second cycle. Approximately 30 days after treatment has ended, an end-of-treatment visit will occur and then participants will be followed for survival every 12 weeks for the next 6 months. Study visits may include a bone marrow aspirate and/or biopsy, blood and urine tests, ECG, vital signs, physical examination, and administration of study treatment.
This is a Phase 1 study investigating the safety and efficacy of Danvatirsen as a monotherapy followed by combination with Venetoclax in patients with relapsed/refractory myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). Funding Source: FDA OOPD
This is a Phase 1a/b study to evaluate the safety and tolerability of an antibody conditioning regimen known as JSP191, in combination with low dose radiation and fludarabine, in subjects with Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia (AML) undergoing allogenic blood stem cell transplantation.
There are no strategies developed post-stem cell transplant (SCT) for patients who receive allogenic SCT with a significant amount of blasts prior SCT. Novel strategies to treat relapsed AML/MDS and to reduce the incidence of relapse after allogeneic SCT are needed. This study is being done in patients with high-risk MDS or AML who undergo an allogeneic SCT. The study will have two arms, participants who receive an HLA-matched unrelated donor SCT (Arm A) or HLA- haploidentical SCT (Arm B). Following myeloablative conditioning (MAC), GVHD prophylaxis with post-transplantation cyclophosphamide (PTCy), tacrolimus and mycophenolate mofetil will be given per standard of care. At 40-60 days post SCT, If the patient has not had any evidence of Grade II-IV acute graft-versus-host-disease (aGVHD), Nivolumab will be given intravenously every 2 weeks for 4 cycles of consolidation or treatment with Nivolumab. Dose-escalation of Nivolumab will follow the standard 3+3 design where a maximum of three dose levels will be evaluated, with a maximum of 18 patients treated with nivolumab per arm. As the maximum tolerated dose (MTD) of Nivolumab may differ between Arm A and Arm B, dose escalation of nivolumab in each arm will be followed separately following allogeneic SCT. Immunosuppression with tacrolimus will be continued during the cycles of PD-1 blockade to provide a moderate level of GVHD prophylaxis during consolidation or treatment with nivolumab.
NTX-301 is a DNMT1 inhibitor. The drug is an oral drug with preclinical data that has shown preclinical anti-leukemic efficacy. This is the first clinical trial using NTX-301 in patients with myeloid malignancies.
This study is a non-interventional, specimen collection translational study to evaluate vitamin C levels in the peripheral blood of Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS), or Chronic Myelomonocytic Leukemia (CMML) patients.
This multi center open label Phase 1b study is designed to evaluate the safety, efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of glasdegib (PF-04449913) when combined with azacitidine in patients with previously untreated Higher Risk Myelodysplastic Syndrome (MDS), Acute Myeloid Leukemia (AML), or Chronic Myelomonocytic Leukemia (CMML). This clinical study includes two components: (a) a safety lead in cohort (LIC) and (b) an expansion phase with an AML cohort and an MDS cohort.
This research study is a Phase II clinical trial. Phase II clinical trials test the effectiveness of an investigational intervention to learn whether the intervention, in this case, the GVAX vaccine, works in preventing MDS, CMML, or AML from relapsing after allogeneic stem cell transplantation. "Investigational" means that the vaccine is still being studied and that research doctors are trying to find out more about it-such as the side effects it may cause, and if the vaccine is effective. It also means that the FDA has not yet approved the vaccine for these types of cancer. Participants are being asked to participate in this trial because they have advanced myelodysplastic syndrome (MDS), Chronic Myelomonocytic Leukemia (CMML), or acute myeloid leukemia (AML). Investigators have determined that participants are a candidate for an allogeneic stem cell transplant as treatment for MDS/CMML/AML. Allogeneic stem cell transplantation is a standard treatment for MDS/CMML/AML. It can be effective because the cells from the donor (also known as the graft) could form a new immune system that can fight against the MDS/CMML/AML cells in the body. This is also known as the "graft-versus-leukemia" or "GVL" effect. In patients with advanced MDS, CMML, or AML that is not in remission at the time of transplantation, relapse remains the number one cause of transplant failure. As such, this clinical trial is designed to assess whether adding a leukemia vaccine early after transplantation could stimulate donor cells to fight cancer and improve transplant outcomes. In recent years, researchers at the Dana-Farber Cancer Institute have discovered that GVAX, a vaccine made from the patient's own cancer cells engineered to produce a protein called GM-CSF, can be effective in stimulating a powerful immune response specific to that cancer. GM-CSF is a naturally occurring hormone in the body that helps the immune system fight infections and diseases. The GVAX vaccine is made in the laboratory by using a virus (called adenovirus, which has been modified so it cannot cause illness) to insert the GM-CSF gene into tumor cells. The cells are then irradiated, which prevents them from being able to grow, before being administered to patients in a series of vaccinations. A previous phase I clinical trial using this GVAX vaccine in patients with MDS/AML after allogeneic transplantation demonstrated that the GVAX vaccine is safe, and the survival outcomes were encouraging. The current randomized phase II study will investigate this vaccine further and gather more information to assess the activity. Participants in this study will be "randomized" to receive either GVAX vaccination or placebo (a saline solution) vaccination. Randomization means participants are put into a group by chance. It is like flipping a coin. There is a 50% chance they will receive the GVAX vaccine and a 50% chance they will receive placebo. Neither participants nor investigators will know which participants will be receiving. The primary goal of this trial is to assess if there will be a difference in the percentage of cancer free survivors in the vaccinated vs. placebo group at 18 months after transplant.
The purpose of this study is to: * Test the safety of the research study drug, lenalidomide, when given with Idarubicin and Cytarabine * See how many respond to combination treatment with lenalidomide, Idarubicin and Cytarabine * See how long people respond to this combination therapy * See how long people live after being treated with this combination of drugs
The goal of this research study is to determine if it is feasible to collect leukemia cells from patients ahead of time (before they undergo further treatments) so that these cells (after being radiated so they will no longer grow or divide) can be given back to them as a cancer vaccine if/after the participant receives a bone marrow or blood stem cell transplant in the future. The purpose of the research study will be to collect, freeze and store leukemia calls from participants blood or bone marrow. This study is a companion study to a vaccine study.
RATIONALE: Giving chemotherapy drugs before a donor peripheral blood stem cell transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. PURPOSE: This phase I/II trial is studying how well donor peripheral stem cell transplant works in treating patients with myelodysplastic syndrome, acute myeloid leukemia, or myeloproliferative disorder.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of FR901228 in treating patients who have myelodysplastic syndrome, acute myeloid leukemia, or non-Hodgkin's lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of sodium salicylate in treating patients who have advanced myelodysplastic syndrome , acute myelogenous leukemia or chronic lymphocytic leukemia.
Phase I trial to study the effectiveness of 6-hydroxymethylacylfulvene in treating patients who have refractory myelodysplastic syndrome, acute myeloid leukemia, acute lymphocytic leukemia, or blastic phase chronic myelogenous leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die.
This phase Ib trial tests the safety, side effects, best dose and effectiveness of regorafenib in combination with venetoclax and azacitidine in treating patients with acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Regorafenib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps to slow or stop the spread of cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Azacitidine is in a class of medications called demethylation agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells. Giving regorafenib in combination with venetoclax and azacitidine may be safe, tolerable and/or effective in treating patients with relapsed or refractory AML.
This phase I trial tests the safety, side effects, and best dose of iadademstat when given together with azacitidine and venetoclax in treating patients with newly diagnosed acute myeloid leukemia (AML). Iadademstat inhibits the LSD1 protein and may lead to inhibition of cell growth in LSD1-overexpressing cancer cells. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving iadademstat with azacitidine and venetoclax may be safe, tolerable and/or effective in treating patients with newly diagnosed AML who cannot undergo intensive chemotherapy.
The primary objective is to define the safety and tolerability of AB8939 in patients with AML by determining the dose-limiting toxicities, the maximum tolerated dose, and the recommended dose for dose expansion study.
This phase I trial studies the side effects and best dose of TAK-243 in treating patients with acute myeloid leukemia or myelodysplastic syndromes with increased blasts that has come back (relapsed) or that is not responding to treatment (refractory). TAK-243 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
This randomized phase II/III trial studies how well azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone work in treating older patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as azacitidine, decitabine, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone may kill more cancer cells.
This randomized phase II/III trial studies how well azacitidine works with or without lenalidomide or vorinostat in treating patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, stopping them from dividing, or by stopping them from spreading. Lenalidomide may stop the growth of cancer cells by stopping blood flow to the cancer. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether azacitidine is more effective with or without lenalidomide or vorinostat in treating myelodysplastic syndromes or chronic myelomonocytic leukemia.
This study examines the effect of a small molecule inhibitor to the Sonic Hedgehog pathway on select hematologic malignancies.
The main purpose of this study is to learn how patients with myelodysplastic syndrome (MDS) respond to the study drug dasatinib. The study drug, dasatinib, has been approved by the U.S. Food and Drug Administration (FDA) for treatment of leukemia, but has not been approved for the treatment of other kinds of cancer. The use of dasatinib in this study is considered experimental.
To evaluate safety and determine the recommended Phase II dose (RP2D). We hypothesize that targeting leukemia stem/progenitor cells (LSCs) with nadunolimab (IL1RAP antibody) alone or in combination with current therapies of azacitidine (HMA) and venetoclax (Bcl-2 inhibitor), is an effective treatment strategy for high-risk MDS and AML, and with a clinical trial we will establish the safety and the early efficacy of this approach.
This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
SL03-Old Hundred(OHD)-104 is designed as a Phase 1a/1b open label, trial to evaluate the safety, pharmacokinetics (PK), pharmacodynamic (PD), and preliminary efficacy of SL-172154 monotherapy as well as in combination with azacitidine or in combination with Azacitidine and Venetoclax.
This phase II trials studies the effect of treosulfan-based versus clofarabine-based conditioning regimens before donor hematopoietic stem cell transplant in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Chemotherapy drugs, such as treosulfan, fludarabine, and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total-body irradiation before a donor hematopoietic stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. This study may help doctors determine whether treosulfan-based or clofarabine-based conditioning regimen works better before donor hematopoietic stem cell transplant in treating patients with myelodysplastic syndromes or acute myeloid leukemia.
This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.
This study will evaluate the safety, tolerability, and clinical activity of GSK3326595 in participants with relapsed and refractory MDS, chronic myelomonocytic leukemia (CMML), and AML. The study will be conducted in 2 parts: Part 1 will determine the clinical benefit rate (CBR) of GSK3326595 in monotherapy and Part 2 will be expanded to study GSK3326595 in combination with 5-Azacitidine which will be composed of a dose escalation phase followed by dose expansion cohort of GSK3326595.
The purpose of this study is to evaluate the efficacy of treatment with azacitidine (an FDA approved drug for the treatment of MDS) and high dose ascorbic acid in patients with TET2 mutations. This approach is intended to enhance the enzymatic activity of TET2 protein, which in term may help to improve counts and symptoms, related to Myelodysplastic Syndromes and Acute Myeloid Leukemia. This combination is specific to individuals who carry this mutation.