217 Clinical Trials for Various Conditions
To learn if the combination of cladribine, cytarabine, venetoclax, and azacitidine can help to control higher-risk myelodysplastic syndrome (MDS) with excess blasts and/or higher-risk chronic myelomonocytic leukemia (CMML).
This phase II trial is studying how well giving 3-AP together with fludarabine works in treating patients with myeloproliferative disorders (MPD), chronic myelomonocytic leukemia (CMML), or accelerated phase or blastic phase chronic myelogenous leukemia. Drugs used in chemotherapy, such as 3-AP and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help fludarabine work better by making cancer cells more sensitive to the drug. 3-AP and fludarabine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 3-AP together with fludarabine may kill more cancer cells.
To learn if olutasidenib, when combined with a drug called a hypomethylating agent (HMA) can help to control MDS, CMML, and/or MPN. The safety of the drug combination will also be studied.
This phase 1-2 trial studies the side effects and how well tipifarnib works in treating patients with chronic myeloid leukemia, chronic myelomonocytic leukemia, or undifferentiated myeloproliferative disorders. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.
This phase Ib/II trial tests the best dose of axatilimab and effectiveness of axatilimab with or without azacitidine for the treatment of patients with advanced phase myeloproliferative neoplasms (MPN), myeloproliferative neoplasm/myelodysplastic syndrome (MPN/MDS) overlap or high risk chronic myelomonocytic leukemia (CMML). Axatilimab is an antibody that is cloned from a single white blood cell that is known to be able to recognize cancer cells and block a protein on the surface of the white blood cells that may be involved in cancer cell growth. By blocking the proteins, this may slow or halt the growth of the cancer. Azacitidine is in a class of medications called antimetabolites. It works by stopping or slowing the growth of cancer cells. Giving axatilimab with or without azacitidine may be safe and effective in treating patients with advanced phase MPN, MPN/MDS overlap or high risk CMML.
This is a prospective phase I dose-escalation study, with the primary objective to access the MTD and find the RP2D of talazoparib, given in combination with standard of care dosing of pacritinib.
This phase II trial tests whether decitabine and cedazuridine (ASTX727) in combination with venetoclax work better than ASTX727 alone at decreasing symptoms of bone marrow cancer in patients with chronic myelomonocytic leukemia (CMML), myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) with excess blasts. Blasts are immature blood cells. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. The combination of ASTX727 and venetoclax may be more effective in reducing the cancer signs and symptoms in patients with CMML, or MDS/MPN with excess blasts.
This phase I/II trial studies the side effects, best dose, and effect of tagraxofusp and decitabine in treating patients with chronic myelomonocytic leukemia. Tagraxofusp consists of human interleukin 3 (IL3) linked to a toxic agent called DT388. IL3 attaches to IL3 receptor positive cancer cells in a targeted way and delivers DT388 to kill them. Chemotherapy drugs, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tagraxofusp and decitabine may help to control the disease in patients with chronic myelomonocytic leukemia.
This phase I/II trial studies the side effects and best dose of quizartinib when given with azacitidine and to see how well they work in treating patients with myelodysplastic syndrome or myelodysplastic/myeloproliferative neoplasm with FLT3 or CBL mutations. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine and quizartinib may help to control myelodysplastic syndrome or myelodysplastic/myeloproliferative neoplasm.
This phase II trial studies the side effects of salsalate when added to venetoclax and decitabine or azacitidine in treating patients with acute myeloid leukemia or myelodysplasia/myeloproliferative disease that has spread to other places in the body (advanced). Drugs used in chemotherapy, such as salsalate, venetoclax, decitabine, and azacitidine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I/II trial studies the side effects and best dose of gilteritinib and to see how well it works in combination with azacitidine and venetoclax in treating patients with FLT3-mutation positive acute myeloid leukemia, chronic myelomonocytic leukemia, or high-risk myelodysplastic syndrome/myeloproliferative neoplasm that has come back (recurrent) or has not responded to treatment (refractory). Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Gilteritinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine, venetoclax, and gilteritinib may work better compared to azacitidine and venetoclax alone in treating patients with acute myeloid leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndrome/myeloproliferative neoplasm.
There are 5 parts to this study for which the primary objectives are to evaluate safety, tolerability, and pharmacokinetics (PK) of navitoclax when administered alone (Part 1) or when administered in combination with ruxolitinib (Part 2). In Part 2, participants must have been receiving a stable dose of ruxolitinib therapy for at least 12 weeks prior to study enrollment. In Part 3, all eligible participants will receive navitoclax, with the primary objective being to evaluate potential navitoclax effect on QTc prolongation. In Part 4, effect of navitoclax is evaluated on the PK, safety, and tolerability of a single dose of celecoxib. In Part 5, all eligible participants will receive ruxolitinib twice daily and navitoclax once daily for drug-drug interaction (DDI) assessment, followed by continued administration of navitoclax in combination with ruxolitinib.
This clinical trial studies decitabine and cytarabine in treating older patients with newly diagnosed acute myeloid leukemia, myelodysplastic syndrome that is likely to come back or spread to other places in the body, or myeloproliferative neoplasm. Drugs used in chemotherapy, such as decitabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving decitabine and cytarabine may work better than standard therapies in treating cancers of the bone marrow and blood cells, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.
This phase II trial is studying how well giving clofarabine and cytarabine together with filgrastim works in treating patients with newly diagnosed acute myeloid leukemia (AML), advanced myelodysplastic syndrome (MDS), and/or advanced myeloproliferative neoplasm. Drugs used in chemotherapy, such as clofarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving the drugs in different doses may kill more cancer cells. Colony stimulating factors, such as filgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy.
This phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.
RATIONALE: Bortezomib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells. PURPOSE: This clinical trial is studying the side effects and how well bortezomib works in treating patients with advanced myeloproliferative disorders.
This phase II trial studies the side effects and best dose of total-body irradiation when given together with fludarabine phosphate followed by a donor peripheral stem cell transplant in treating patients with myelodysplastic syndromes (MDS) or myeloproliferative disorders (MPD). Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine and cyclophosphamide in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myeloproliferative disorders.
RATIONALE: Drugs used in chemotherapy, such as arsenic trioxide and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Sometimes when chemotherapy is given, it does not stop the growth of cancer cells. The cancer is said to be resistant to chemotherapy. Giving ascorbic acid may reduce drug resistance and allow the cancer cells to be killed. Thalidomide may stop the growth of cancer cells by blocking blood flow to the cancer. Giving arsenic trioxide together with ascorbic acid, dexamethasone, and thalidomide may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving arsenic trioxide together with ascorbic acid, dexamethasone, and thalidomide works in treating patients with chronic idiopathic myelofibrosis or myelodysplastic or myeloproliferative disorders.
This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.
RATIONALE: Doxercalciferol may improve low blood cell counts and decrease the need for blood transfusions and may be an effective treatment for myelodysplastic syndrome or chronic myelomonocytic leukemia. PURPOSE: Phase II trial to study the effectiveness of doxercalciferol in treating patients who have myelodysplastic syndrome or chronic myelomonocytic leukemia.
RATIONALE: Giving chemotherapy drugs before a donor peripheral blood stem cell transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. PURPOSE: This phase I/II trial is studying how well donor peripheral stem cell transplant works in treating patients with myelodysplastic syndrome, acute myeloid leukemia, or myeloproliferative disorder.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase III trial to study the effectiveness of combination chemotherapy in treating children who have Down syndrome and myeloproliferative disorder, acute myelogenous leukemia, or myelodysplastic syndrome.
This randomized phase II trial studies how well WEE1 inhibitor AZD1775 with or without cytarabine works in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has spread to other places in the body and usually cannot be cured or controlled with treatment. WEE1 inhibitor AZD1775 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving WEE1 inhibitor AZD1775 works better with or without cytarabine in treating patients with advanced acute myeloid leukemia or myelodysplastic syndrome.
This phase I/Ib trial studies the side effects and best dose of azacitidine and sonidegib or decitabine and so see how well they work in treating patients with myeloid malignancies. The hedgehog (Hh) signaling pathway plays an important role in cellular growth, differentiation and repair. Inappropriate activation of Hh pathway signaling and uncontrolled cellular proliferation may be associated with mutations in the Hh-ligand cell surface receptor Smo. Sonidegib binds to the Hh cell surface receptor Smo, which may result in the suppression of the Hh signaling pathway and the inhibition of cancer cells. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with sonidegib or decitabine may be a safe and successful treatment for patients with myeloid malignancies.
RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.
This Phase II clinical trial was designed for patients with hematologic malignancies in need of donor peripheral blood stem cell transplant, and have no HLA matched donor. Therefore It will test the efficacy of combining sirolimus, tacrolimus, antithymocyte globulin, and rituximab in preventing graft versus host disease in transplants from HLA Haploidentical and partially mismatched donors.