Treatment Trials

4 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Entinostat Neuroendocrine (NE) Tumor
Description

This is an open-label, single arm, multi-center Phase II trial of entinostat given as a 5 mg oral dose every week (days 1, 8, 15, and 22 of a 4-week cycle) in patients with relapsed or refractory abdominal neuroendocrine (NE) tumors. Patients will continue on treatment until disease progression or intolerable toxicity occurs.

RECRUITING
Genomic and Methylation Markers in SCLC and LCNEC for Chemo-Immunotherapy Resistance Prediction (STRATUS)
Description

The goal of this observational study is to understand how genomic and epigenetic factors contribute to resistance against chemo-immunotherapy in adults diagnosed with extensive-stage small cell lung cancer (ES-SCLC) or metastatic large cell neuroendocrine carcinoma (LCNEC). Both ES-SCLC and LCNEC are aggressive forms of lung cancer with limited treatment options and poor prognosis. While initial responses to chemo-immunotherapy are often promising, most patients develop resistance within a few months, resulting in disease progression and limited survival. This study seeks to explore the molecular and cellular changes that drive resistance, providing insights that could guide more personalized and effective treatment strategies in the future. The study focuses on identifying genomic and methylation signatures, as well as analyzing circulating tumor cells (CTCs) and tumor DNA (ctDNA), to better understand the mechanisms of resistance. By collecting and analyzing these biomarkers over time, researchers aim to identify patterns that distinguish patients who benefit long-term from therapy from those who experience early resistance. These findings may pave the way for new diagnostic tools and therapies to predict and overcome resistance to chemo-immunotherapy. The main questions this study seeks to answer are: Are there specific genomic or methylation patterns that predict resistance to chemo-immunotherapy in ES-SCLC and LCNEC? How are circulating tumor cells (CTCs) and tumor DNA (ctDNA) associated with disease progression, treatment response, and survival? What molecular differences exist between patients who respond long-term and those who develop resistance early in their treatment? Participants will: Provide blood and tumor tissue samples before treatment to establish baseline molecular profiles. Undergo follow-up visits every 9 weeks during treatment, where additional blood samples and imaging tests will be collected to monitor disease progression and treatment response. Optionally provide tissue samples through re-biopsy if the disease progresses, enabling researchers to compare changes in tumor biology over time. All blood and tissue samples will be de-identified and securely stored for genomic and epigenetic analyses. Blood samples will be examined for circulating tumor cells and tumor DNA, while tumor tissue samples will undergo in-depth genomic and methylation profiling. Researchers will use advanced molecular and bioinformatics techniques to uncover specific patterns associated with resistance, aiming to improve current treatment strategies and develop more precise therapies. The study will analyze data from patients over three years, encompassing various stages of treatment and disease progression. By examining longitudinal samples, the study aims to capture the dynamic changes that occur in the tumor microenvironment and how these relate to treatment outcomes. This research is particularly important because current treatment options for ES-SCLC and LCNEC are limited, and there are no established methods to predict which patients will respond to chemo-immunotherapy. Identifying biomarkers of resistance could transform clinical care, allowing oncologists to tailor treatments to individual patients' molecular profiles and improve survival outcomes. Ultimately, the findings from this study could lead to the development of new biomarkers for resistance, improve early detection of treatment failure, and provide the foundation for novel therapies targeting resistant cancer cells. By addressing a critical gap in the understanding of resistance mechanisms, the STRATUS trial has the potential to significantly advance the field of personalized oncology.

WITHDRAWN
Phase I/II Trial of Rhenium 188-P2045 in Small Cell Lung Cancer and Other Advanced Neuroendocrine Carcinomas
Description

There are two parts to this trial. The first study will evaluate increasing doses of Re188 P2045 in patients with advanced small cell lung cancer that has recurred after initial therapy or in patients with other advanced neuroendocrine cancers that have progressed after therapy. Re188 P2045 is designed to attach to type 2 somatostatin receptors that are frequently expressed in those cancers and then the radioactivity from Re188 will kill the cancer cell. Only patients who have cancers that can be seen when Tc99 P2045 is administered (also seeks out the SSTR2, but Tc99 images, but does not treat the cells) will be treated. Therefore, this approach maximizes the possibility that patients will benefit from treatment in that only those who have cancers that have the target will undergo treatment. The primary purpose of this study will be to determine the highest dose of Re188 P2045 that can be safely administered. The second study will open after the conclusion of the first. Patients will first undergo the scan with Tc99 P2045 and then be treated with topotecan for three days. Topotecan is a standard chemotherapy drug that is approved for second line therapy for small cell and frequently used for other neuroendocrine cancers. Following that, patients will then be re-evaluated with the Tc99 P2045 scan and if it demonstrates that the tumor is positive for SSTR2, then patients will receive Re188 P2045. The goal of this study is to determine the highest dose of Re188 P2045 that can be safely administered after topotecan as well as to determine if topotecan will increase the chance that the tumor will express SSTR2.

RECRUITING
Pilot Study for Detection of PSMA-Low CRPC-NE Tumors With Fluciclovine PET/CT
Description

This research study is studying a positron emission tomography (PET) agent called 18F-fluciclovine to evaluate how well 18F-fluciclovine-PET scans determine the extent of advanced prostate cancer that either has low prostate-specific membrane antigen (PSMA) expression or has neuroendocrine features. The name of the study interventions are: * 18F-fluciclovine-PET/CT scan * Two research blood collections