Treatment Trials

9 Clinical Trials for Various Conditions

Focus your search

UNKNOWN
Comparison of 10 kHz SCS Combined With CMM to CMM Alone in the Treatment of Neuropathic Limb Pain
Description

This post-market study is being conducted to document comparative safety, clinical effectiveness, and cost-effectiveness of the addition of HF10™ therapy to CMM compared with CMM alone in subjects with chronic, intractable, neuropathic lower limb pain due to diabetic neuropathy (Painful Diabetic Neuropathy or PDN). This study is a multi-center, prospective, randomized comparison of the two treatments.

UNKNOWN
Novel Home Care Device for High-Risk Diabetic Patients
Description

More than half of all lower extremity amputations are in persons with diabetes. These patients suffer from severe, diabetes-induced, peripheral, sensory neuropathy and, thus they frequently do not protect their feet from repetitive shear stress or traumatic episodes and ulceration often ensues. We have previously shown that the temperature profile of the plantar aspects of the foot provides a reliable warning of tissue injury and can be effectively used as a preventive modality. In this study we propose to further develop and clinically test a novel infrared-based temperature instrument (TempTouchRM®) that is intended for home use by high-risk diabetic patients. This step-on remote monitoring device will serve as an early warning system for impending ulcers and Charcot fractures. The study's central hypothesis is that the TempTouchRM device will reduce the incidence of ulcers by providing an accurate, simple, and effective approach to monitor changes in foot temperatures.

TERMINATED
Modulating Neuropathic Pain With Transcranial Direct Current Stimulation
Description

This study will examine whether a form of non-invasive brain stimulation can help reduce pain in people with persistent neuropathic pain.

COMPLETED
Immersive Virtual Reality for Neuropathic Pain
Description

Investigating how neuropathic limb pain, including phantom limb pain or complex regional pain syndrome, is affected by virtual reality. While several studies have looked into virtual reality for treating this type of pain, few have used the latest immersive virtual reality hardware combined with motion control for an engaging virtual mirror therapy experience. The investigators are interested in studying the use of virtual reality as an alternative treatment option for these conditions.

COMPLETED
MR Guided Focused Ultrasound for Treatment of Neuropathic Pain
Description

Neuropathic pain is often a result of direct diseases of peripheral or central nervous system with an estimated prevalence of 8% of adults and this pain is associated with significant consequences because of longer symptom duration and severity than many of the other pain syndromes. Functional brain imaging has revealed that many regions of the brain are engaged by painful events, but specific areas such as the thalamus have been markedly implicated. The purpose of this study is to determine the feasibility and safety of MRI-guided focused ultrasound treatment using the ExAblate Transcranial System in patients suffering from Neuropathic pain. This treatment modality offers non-invasive precise treatment potential for these patients.

ACTIVE_NOT_RECRUITING
Closed-loop Deep Brain Stimulation to Treat Refractory Neuropathic Pain
Description

Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but current technology is unable to reliably achieve long-term pain symptom relief. A "one-size-fits-all" approach of continuous, 24/7 brain stimulation has helped patients with some movement disorders, but the key to reducing pain may be the activation of stimulation only when needed, as this may help keep the brain from adapting to stimulation effects. By expanding the technological capabilities of an investigative brain stimulation device, the investigators will enable the delivery of stimulation only when pain signals in the brain are high, and then test whether this more personalized stimulation leads to reliable symptom relief for chronic pain patients over extended periods of time.

RECRUITING
Surgical Treatments for Postamputation Pain
Description

This is a double-blind randomised controlled trial (RCT) which compares the effectiveness of three surgical techniques for alleviating residual limb pain (RLP), neuroma pain and phantom limb pain (PLP). The three surgical treatments are Targeted Muscles Reinnervation (TMR), Regenerative Peripheral Nerve Interface (RPNI), and an active control (neuroma excision and muscle burying). Patients will be follow-up for 4 years.

WITHDRAWN
Surgical Treatments for Neuroma Pain in Amputees
Description

Amputees often suffer from relentless pain and disability resulting from symptomatic neuromas within the amputation stumps. When conservative measures fail to address these symptoms, two contemporary surgical approaches to treat symptomatic neuromas have become the most popular. Targeted muscle reinnervation (TMR) is a procedure which involves transferring the injured proximal nerve stump into a terminal nerve branch entering muscle, such that the axons from the proximal nerve stump will regenerate into the muscle and thereby prevent neuroma recurrence. Regenerative peripheral nerve interfaces (RPNIs) are muscle grafts placed on the proximal nerve stumps that serve as targets for the regenerating axons from the proximal nerve stumps. While TMR and RPNIs have demonstrated promise for the treatment of symptomatic neuromas, prospective comparative data comparing outcomes with these two approaches is lacking. The investigators have recently developed a novel approach to treat symptomatic neuromas that provides vascularized, denervated muscle targets (VDMTs) for the axons regenerating from the severed proximal nerve stump to reinnervate. This is accomplished by islandizing a segment of muscle on its blood supply and ensuring complete denervation prior to implanting the neighboring transected nerve stump into this muscle. VDMTs offer theoretical benefits in comparison to RPNIs and TMR that the investigators also aim to test in the proposed study. The investigators' objective is to enroll amputees with symptomatic neuromas into a prospective study in which amputees will be randomized to undergo TMR, RPNI, or VDMT and subsequently monitored for pain and disability for 1-year post-operatively. The investigators' specific aims are as follows: 1) Test the hypothesis that VDMTs are more effective than TMR and RPNIs with regards to treating pain and disability associated with symptomatic neuromas; 2) Provide the first level one, prospective data directly comparing the efficacy of TMR and RPNIs.

COMPLETED
Electrical Stimulation for the Treatment of Post-Amputation Pain Using the SPRINT System
Description

The purpose of this study is to determine if electrical stimulation (small levels of electricity) can safely and effectively reduce post-amputation pain. This study involves a device called the SPRINT System. The SPRINT System delivers mild electrical stimulation to nerves in the residual limb. The SPRINT System includes a small wire (called a "lead") that is placed through the skin in the upper leg. It also includes a device worn on the body that delivers stimulation (called the SPRINT Stimulator).