65 Clinical Trials for Various Conditions
This phase I clinical trial studies the side effects and best dose of AZD1390 and to see how well it works when given together with radiation therapy for the treatment of pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma. AZD1390 is in a class of medications called kinase inhibitors. It works by blocking the signals that cause cancer cells to multiply. This helps to stop the spread of cancer cells. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving AZD1390 with radiation may be safe, tolerable, and/or effective in treating pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma.
The goal of this study is to determine the response of the study drug loratinib in treating children who are newly diagnosed high-grade glioma with a fusion in ALK or ROS1. It will also evaluate the safety of lorlatinib when given with chemotherapy or after radiation therapy.
The purpose of this study is to find out if performing additional Magnetic Resonance Image (MRI) scans of the subjects' brain during each week of the radiation treatment of their high-grade glioma will help improve the radiation treatment.
The objective of this study is to assess the tolerability, safety, and efficacy of Liposomal Curcumin (LC) in combination with radiotherapy (RT) and Temozolomide (TMZ) in patients with newly diagnosed High-Grade Gliomas (HGG).
This is a pilot study that will evaluate disease status in children that have been newly diagnosed high-grade glioma with TRK fusion. The evaluation will occur after 2 cycles of the medication (Larotrectinib) have been given. The study will also evaluate the safety of larotrectinib when given with chemotherapy in your children; as well as the safety larotrectinib when given post-focal radiation therapy.
This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.
The purpose of this phase I trial is to test the safety of combining GMCI, an immunostimulator, plus nivolumab, an immune checkpoint inhibitor (ICI), with standard of care radiation therapy, and temozolomide in treating patients with newly diagnosed high-grade gliomas. Gene Mediated Cytotoxic Immunotherapy (GMCI) involves the use of aglatimagene besadenovec (AdV-tk) injection into the tumor site and oral valacyclovir to kill tumor cells and stimulate the immune system. Nivolumab is an immune checkpoint inhibitor that may also stimulate the immune system by blocking the PD-1 immune suppressive pathway. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors and temozolomide is a chemotherapy drug that kills tumor cells. Giving GMCI, nivolumab, radiation therapy, and temozolomide may work better in treating patients with high-grade gliomas
The investigators of this study want to see if shortening the total treatment time for brain tumors is safe.The treatment for participant's brain tumors is laser surgery (Laser Interstitial Thermal Therapy (LITT)) followed by radiation with chemotherapy. For participants, the total time of treatment from surgery to the end of radiation and chemotherapy is about l 0 weeks long. This study asks whether it is safe to shorten the total treatment to 7 weeks. To shorten the total treatment time, investigators want to see if it is safe to start radiation with chemotherapy within 5 days after surgery. Usually patients start their radiation with chemotherapy about 21-28 days after the surgery. Shortening the total time of treatment may allow investigators to kill the cancer cells more effectively.
This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.
A recent prospective multicenter study by Dr. Grossman demonstrated that 40% of patients with high grade glioma undergoing radiation and chemotherapy developed severe and persistent lymphopenia (CD4 counts \<200 cells/mm3). This lymphopenia lasted for twelve months following radiation treatment and on multivariate analysis was associated with shorter survival. Our group has data that strongly suggests that this lymphopenia is secondary to the inadvertent radiation of circulating lymphocytes as they pass through the radiation beam. Investigators propose the use of FDA approved for multiple sclerosis, fingolimod to signal lymphocytes to leave the circulation prior to the initiation of radiation. It is a functional antagonist of the sphingosine-1-phosphate receptor (S1PR) pathway and prevents lymphocyte egress from secondary lymphoid organs. Oral fingolimod will be given 1 week prior to the initiation of concurrent radiation and temozolomide and will be discontinued immediately upon completion of the six weeks of therapy. The primary objective is to evaluate if fingolimod can be safely combined with radiation and temozolomide. Secondary endpoint is total lymphocyte counts (TLC) for the proposed study participants. Investigators expect that patients receiving radiation and temozolomide plus fingolimod have a recovery of lymphocyte counts to 80% of baseline within four months, reference to historical control in which sustained lymphopenia lasted for twelve months.
The primary goal of this study is evaluate T cell immune status and immune reconstitution and the association with specific cytokines in patients with newly diagnosed HGGs undergoing the standard RT/TMZ and adjuvant TMZ.
There are preliminary studies that suggest that radiation therapy to areas of the brain containing cancer stem cells (in addition to the area where the tumor was surgically treated) may help patients with high-grade brain tumors live longer. The purpose of this study is to determine whether the addition of stem-cell radiation therapy to the standard chemoradiation will further improve the outcome. The investigators will collect information about the patient's clinical status, disease control, neurocognitive effects, and quality of life during follow-up in our department. The purpose of the study is to improve the overall survival patients with newly diagnosed malignant brain tumors treated with stem cell radiation therapy and chemotherapy. The investigators will also measure how patients treated with this novel method of radiation therapy do over time in terms of disease control, potential neurocognitive side effects, overall function, and quality of life.
This pilot phase I/II trial studies the side effects and best dose of plerixafor after radiation therapy and temozolomide and to see how well it works in treating patients with newly diagnosed high grade glioma. Plerixafor may stop the growth of tumor cells by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. Giving plerixafor after radiation therapy and temozolomide may be an effective treatment for high grade glioma.
The purpose of this study is to find the highest dose of mebendazole (MBZ) that can be safely given to people with malignant brain tumors in combination with the current standard of care (temozolomide) without causing severe side effects. We also want to find out if MBZ can slow the growth of the brain tumor. The study doctors have found that MBZ is effective against malignant brain tumors in the laboratory and animal models of brain tumors.
This research study is being done to see if lymphocytes can be collected from patients with high grade gliomas before they start standard radiation and chemotherapy. (Lymphocytes are cells that normally circulate in the blood and are an essential part of the immune system). The investigators goal is to store these and give them back to the patient after radiation is completed. This is part of a larger effort that will attempt to preserve the immune system from the effects of radiation and chemotherapy.
This randomized phase II/III trial is studying vorinostat, temozolomide, or bevacizumab to see how well they work compared with each other when given together with radiation therapy followed by bevacizumab and temozolomide in treating young patients with newly diagnosed high-grade glioma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving vorinostat is more effective then temozolomide or bevacizumab when given together with radiation therapy in treating glioma.
The outcome for children with high-grade gliomas and diffuse intrinsic brainstem gliomas remains poor despite the use of multi-modal therapy with surgery, radiation therapy and chemotherapy.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as arsenic trioxide and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Arsenic trioxide and temozolomide may also make tumor cells more sensitive to radiation therapy. Giving radiation therapy together with combination chemotherapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of arsenic trioxide when given together with temozolomide and radiation therapy in treating patients with newly diagnosed high-grade glioma.
RATIONALE: Studying samples of blood in the laboratory from patients receiving temozolomide may help doctors learn how temozolomide works in the body. It may also help doctors learn more about how a patient's genes may affect the risk of developing thrombocytopenia. PURPOSE: This clinical trial is studying the pharmacokinetics in patients with newly diagnosed high-grade glioma receiving temozolomide and radiation therapy.
The purpose of this study is to test the safety and tolerability of the research study drugs nivolumab, ipilimumab, lomustine, bevacizumab, and temozolomide when used following surgery and before standard therapy with radiation and temozolomide in patients with newly diagnosed high grade glioma. Additional aims of the study are to: * Find out side effects (good and bad) of study drug combinations. * Evaluate any preliminary evidence of anticancer activity of study drug combinations . * Evaluate tumor characteristics by collecting brain tumor tissue samples. * Measure the amount of nivolumab and ipilimumab in biospecimens. * Look at biomarkers in biospecimens.
This will be an open label, single arm study. Subjects with newly diagnosed high grade glioma will begin minocycline one week prior to beginning postoperative chemoradiation and continue it until progression, intolerance, or the end of adjuvant temozolomide, whichever comes first.
The primary objective will be to demonstrate the manufacturing feasibility and safety, and to determine the maximum tolerated dose (MTD) of RNA-LP vaccines in (Stratum 1) adult patients with newly diagnosed GBM (MGMT low level or unmethylated in adults only) and (Stratum 2) in pediatric patients with newly diagnosed HGG (pHGG). Funding Source - FDA OOPD
High grade gliomas (HGGs) are rapidly progressive brain tumors resulting in death for most patients between 6 months and 2 years after diagnosis. It is important for patients with HGG to discuss and document their wishes at the end of life. However, many of these patients experience early changes in cognition which impede their decision-making. For this reason, these patients should have early discussions with their providers. However, implementation of this remains challenging in clinical practice. In this study, we will create an Early STructured Advanced care Referrals by Telehealth (Early START) visit for patients soon after their initial oncology visit. A checklist and pre-visit guide were developed to help guide the visit for both the provider and patient. Providers will receive special training in running these visits. Caregivers and/or family members will be encouraged to participate. Visits will be done using video or telephone and recorded. For patients who do not have access to technology for these visits, it will be provided. After the visit, patients, caregivers and/or family who participated, and providers will fill out surveys to address feasibility of having these extra visits and improve the visits for future. Patients will be followed until death. Caregivers and/or family who participated will be asked about whether end of life was in line with the patient's wishes. We will also use the patient's medical record to assess other aspects of end of life. We will compare end of life outcomes with other similar patients treated at our center.
To determine the safety and efficacy of surgical resection with Gliadel® 3.85% wafer implantation, followed by concomitant limited field radiation therapy and temozolomide, followed by dose dense temozolomide and bevacizumab in subjects undergoing initial surgery for newly-diagnosed high grade glioma.
To determine the safety and efficacy of surgical resection with Gliadel® 3.85% wafer implantation, followed by concomitant limited field radiation therapy and temozolomide, followed by dose dense temozolomide in subjects undergoing initial surgery for newly-diagnosed high grade glioma.
The overall objective of this pilot study is to collect immunological and safety data following administration of vaccinations with HLA-A2. This data will be used to decide whether a larger study of clinical efficacy is warranted.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase II trial to study the effectiveness of combining carboplatin, temozolomide, and filgrastim in treating patients who have newly diagnosed or recurrent high-grade glioma.
The investigators have developed a phase I/II clinical trial to evaluate the effect of rhIL-7-hyFc on lymphocyte counts in patients with high grade glioma (HGG). A phase I study will test whether rhIL-7-hyFc can be safely administered to patients with HGG. Six doses of rhIL-7-hyFc will be tested using a mix of Accelerated Phase and standard 3+3 dose-escalation design. The phase II portion to test effect of rhIL-7-hyFc on lymphocyte counts will use placebo-controlled randomization in HGG patients whose treatment include the standard radiation therapy (RT) and temozolomide (TMZ).
This is a multisite, phase I/II clinical trial in children and young adults with newly-diagnosed high-grade glioma (HGG), diffuse midline glioma (DMG) and recurrent HGG/DMG, Medulloblastoma (MB), or ependymoma (EPN) to determine the safety, immunogenicity, and efficacy of a CMV-directed peptide vaccine plus checkpoint blockade.
The goal of this study is to evaluate the safety of the study drug PTC596 (Unesbulin) taken in combination with radiotherapy (RT) when given to pediatric patients newly diagnosed with High-Grade Glioma (HGG) including diffuse intrinsic pontine glioma (DIPG). The main aims of the study are to: * Find the safe dose of the study drug PTC596that can be given without causing serious side effects. * Find out the amount of drug that enters blood (in all patients) and tumor (in patients who receive drug prior to a planned surgery for removal of their brain tumor) During the first cycle (6-7weeks), patients will receive drug orally twice a week in combination with daily RT. During subsequent cycles (4 weeks each), they will receive only the study drug orally twice a week. Funding Source - FDA OOPD