Treatment Trials

40 Clinical Trials for Various Conditions

Focus your search

TERMINATED
A Study of Selinexor in Combination With Standard of Care Therapy for Newly Diagnosed or Recurrent Glioblastoma
Description

This is a Phase 1/2 study of selinexor in combination with standard of care (SoC) therapy for newly diagnosed glioblastoma (nGBM) or recurrent glioblastoma (rGBM). This study will be conducted in 2 phases: a Phase 1a dose finding study followed by Phase 1b (dose expansion) and a Phase 2 randomized efficacy exploration study and will independently evaluate 3 different combination regimens in 3 treatment arms in patients with nGBM (Arms A and B) or with rGBM (Arm C). * Arm A: evaluating the combination of selinexor with radiation therapy (S-RT) in nGBM participants with uMGMT * Arm B: evaluating the combination of selinexor with radiation therapy and temozolomide (TMZ) (S-TRT) in nGBM participants with methylated-O6-methylguanine-DNA-methyltransferase (mMGMT) * Arm C: evaluating the combination of selinexor with lomustine (or carmustine, if lomustine is not available) (S-L/C) in rGBM participants regardless of MGMT status * Arm D: evaluating the combination of selinexor with bevacizumab in rGBM participants regardless of MGMT status * Arm E: evaluating the combination of selinexor with tumor treating fields (TTField) in rGBM participants regardless of MGMT status

RECRUITING
A Trial to Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma
Description

Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.

Conditions
COMPLETED
Study to Evaluate Ibudilast and TMZ Combo Treatment in Newly Diagnosed and Recurrent Glioblastoma
Description

Part 1 is an open-label, single-arm, dose escalation study of MN-166 (ibudilast) and temozolomide (TMZ) combination treatment. Evaluate safety and tolerability of ibudilast (MN-166) and TMZ combination treatment for 1 cycle (28 days); determine dosage in dose-finding study. Part 2 will evaluate efficacy of fixed-dose MN-166 (ibudilast) and TMZ combination treatment for 6 cycles (\~6 months) until disease progression, unacceptable tolerability and/or toxicity or loss of life.

COMPLETED
A Study Assessing Pamiparib With Radiation and/or Temozolomide (TMZ) in Participants With Newly Diagnosed or Recurrent Glioblastoma
Description

The primary objective of this study is to evaluate the safety, efficacy and clinical activity of Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in participants with newly diagnosed or recurrent/refractory glioblastoma.

COMPLETED
Phase I Study of a Dendritic Cell Vaccine for Patients With Either Newly Diagnosed or Recurrent Glioblastoma
Description

The purpose of this study is to test the safety and effects of a special type of a cancer vaccine called a 'dendritic cell vaccine' in patients with either newly diagnosed or recurrent glioblastoma. The goal of this dendritic cell vaccine is to activate a patient's own immune system against their tumor. This study utilizes a patient's own immune-stimulating dendritic cells that are isolated in a procedure called leukapheresis. In a laboratory, these dendritic cells are treated in a way that is designed to promote an immune response against cancer stem cells. Then the dendritic cells are injected under the skin in a series of vaccinations, with the goal of activating an immune response against cancer stem cells in the tumor. To qualify for this study, patients must have very little to no residual tumor visible on a recent MRI. In addition to the vaccines, patients with newly diagnosed glioblastoma will receive standard temozolomide chemotherapy and radiation therapy. Patients with recurrent glioblastoma will not receive any treatment other than the vaccines as long as they are participating in this study, unless they were previously treated with bevacizumab, in which case they will be allowed to continue receiving bevacizumab.

TERMINATED
Imaging Trial With I-124-CLR1404 in Patients With Newly Diagnosed or Recurrent Glioblastoma
Description

The primary objective of this trial is to determine the optimal dose and imaging time point(s) of I-124-CLR1404 in subjects with newly diagnosed and recurrent glioma to be used in future trials.

Conditions
COMPLETED
Adavosertib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma
Description

This phase I trial studies the side effects and best dose of adavosertib when given together with radiation therapy and temozolomide in treating patients with glioblastoma that is newly diagnosed or has come back. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving adavosertib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed or recurrent glioblastoma compared to radiation therapy and temozolomide alone.

COMPLETED
Aflibercept, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma Multiforme, Gliosarcoma, or Other Malignant Glioma
Description

This phase I trial is studying the side effects and best dose of aflibercept when given together with radiation therapy and temozolomide in treating patients with newly diagnosed or recurrent glioblastoma multiforme, gliosarcoma, or other malignant glioma. Aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with radiation therapy and temozolomide may kill more tumor cells.

RECRUITING
Dose Finding Study of [177Lu]Lu-NeoB in Newly Diagnosed Glioblastoma and in Recurrent Glioblastoma
Description

This study will investigate different doses of \[177Lu\]Lu-NeoB in combination with RT and TMZ in participants with newly diagnosed glioblastoma, with methylated or unmethylated promoter, to assess the safety and efficacy of \[177Lu\]Lu-NeoB in combination with the SoC and in recurrent glioblastoma as single agent, to identify the recommended dose and to also explore the safety of the PET imaging agent \[68Ga\]Ga-NeoB and characterize its uptake in the tumor area.

ACTIVE_NOT_RECRUITING
Trial of Niraparib in Participants with Newly-diagnosed Glioblastoma and Recurrent Glioma
Description

This is an open-label, multi-center Phase 0 study with an expansion phase that will enroll up to 24 participants with newly-diagnosed glioblastoma and up to 18 recurrent glioma participants with IDH mutation and ATRX loss. The trial will be composed of a Phase 0 component (subdivided into Arm A and B) and a therapeutic expansion phase. Patients with tumors demonstrating a positive PK Response (in Arm A) or a positive PD Response (in Arm B) of the Phase 0 component of the study will graduate to a therapeutic expansion phase that combines therapeutic dosing of niraparib plus standard-of-care fractionated radiotherapy (in Arm A) or niraparib monotherapy (in Arm B) until progression of disease.

NOT_YET_RECRUITING
Phase 0 With Expansion Phase Clinical Trial of Quisinostat Plus Radiotherapy in Newly-diagnosed and Recurrent Grade 4 IDH-Wildtype Glioblastomas
Description

This is an open-label, multi-center Phase 0/1b study that will enroll up to 18 participants with recurrent WHO grade 4 glioblastoma (rGBM) IDH-wildtype (IDH-WT), Arm A, and 12 participants with presumed newly-diagnosed WHO grade 4 glioblastoma (nGBM) IDH-WT, Arm B. The trial will be composed of a Phase 0 component (subdivided into Arms A and B), and an Expansion Phase 1b. Patients with tumors demonstrating a positive pharmacokinetic (PK) response in the Phase 0 component of the study will graduate to an Expansion Phase that combines therapeutic dosing of quisinostat plus standard-of-care fractionated radiotherapy (RT).

ACTIVE_NOT_RECRUITING
A Phase 1b / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma
Description

This multicenter, Phase 1b/2 study is being conducted to determine if the experimental cell therapy is safe, tolerable and can delay the return of cancer in patients with a newly diagnosed or recurrent glioblastoma multiforme (GBM) in combination with standard chemotherapy treatment temozolomide (TMZ). If there is a 25% or greater improvement in survival in this study then the therapy should be studied further.

Conditions
RECRUITING
A Dose Finding Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed Glioblastoma in Combination With Standard of Care and in Recurrent Glioblastoma as a Single Agent.
Description

A Dose Finding Study of \[177Lu\]Lu-DOTA-TATE in Newly Diagnosed Glioblastoma in Combination with Standard of Care and in Recurrent Glioblastoma as a Single Agent

Conditions
RECRUITING
ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors
Description

This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

TERMINATED
18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas
Description

To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

Conditions
Adult Anaplastic EpendymomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Diffuse AstrocytomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Mixed GliomaAdult OligodendrogliomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult Subependymal Giant Cell AstrocytomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligoastrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
COMPLETED
Temozolomide and O6-benzylguanine in Treating Patients With Newly Diagnosed, Recurrent, or Progressive Anaplastic Glioma
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining temozolomide and O6-benzylguanine in treating patients who have newly diagnosed, recurrent, or progressive anaplastic glioma.

ACTIVE_NOT_RECRUITING
Mycophenolate Mofetil Combined With Radiation Therapy in Glioblastoma
Description

This is a phase 0/1 dose-escalation trial to determine the maximum tolerated dose of Mycophenolate Mofetil (MMF) when administered with radiation, in patients with glioblastoma or gliosarcoma.

ACTIVE_NOT_RECRUITING
A Phase 1-2 Study of ST101 in Patients With Advanced Solid Tumors
Description

This is an open-label, two-part, phase 1-2 dose-finding study designed to determine the safety, tolerability, PK, PD, and proof-of-concept efficacy of ST101 administered IV in patients with advanced solid tumors. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
RECRUITING
NovoTTF Treatment Signatures in Glioblastoma Patients at Autopsy
Description

This study will assess whole brain samples from glioblastoma patients at autopsy to determine the underlying pathological signatures of tumor treatment fields at autopsy.

Conditions
COMPLETED
Iodine I 131 Monoclonal Antibody 3F8 in Treating Patients With Central Nervous System Cancer or Leptomeningeal Cancer
Description

RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.

ACTIVE_NOT_RECRUITING
Safety and Tolerability of Carboxyamidotriazole Orotate (CTO) in Solid Tumors or With Temodar® in Glioblastoma or Other Recurrent Malignant Gliomas or in Combination With Temodar® and Radiation Therapy for Patients With Newly Diagnosed Glioblastoma and Malignant Gliomas
Description

The purpose of this study is to determine the safety, tolerability, and the maximum tolerated dose/recommended phase II dose of carboxyamidotriazole orotate (CTO) as a single agent in patients with advanced or metastatic solid tumors; in combination with oral Temodar® in patients with glioblastoma or other recurrent malignant gliomas; or in combination with oral Temodar® and radiation therapy in patients with newly diagnosed glioblastoma or other malignant gliomas.

WITHDRAWN
Carboplatin, Temozolomide, and Filgrastim in Treating Patients With Newly Diagnosed or Recurrent High-Grade Glioma
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase II trial to study the effectiveness of combining carboplatin, temozolomide, and filgrastim in treating patients who have newly diagnosed or recurrent high-grade glioma.

UNKNOWN
Surgery, Radiation Therapy, and Chemotherapy With or Without Photodynamic Therapy in Treating Patients With Newly Diagnosed or Recurrent Malignant Supratentorial Gliomas
Description

RATIONALE: Photodynamic therapy uses light and drugs that make cancer cells more sensitive to light to kill tumor cells. It is not yet known if the addition of photodynamic therapy to combined therapy with surgery, radiation therapy, and chemotherapy is more effective than combined therapy alone for supratentorial gliomas. PURPOSE: Randomized phase III trial to study the effectiveness of surgery, radiation therapy, and chemotherapy with or without photodynamic therapy in treating patients who have newly diagnosed or recurrent malignant supratentorial gliomas.

TERMINATED
Imatinib Mesylate With or Without Radiation Therapy in Treating Young Patients With Newly Diagnosed or Recurrent Glioma
Description

Phase I/II trial to estimate the maximum tolerated dose of imatinib mesylate in newly diagnosed brain stem gliomas and recurrent high grade gliomas and to assess the effectiveness of imatinib mesylate in treating young patients who have newly diagnosed intrinsic brain stem glioma. Imatinib mesylate may interfere with the growth of tumor cells by blocking the enzymes necessary for their growth. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining imatinib mesylate with radiation therapy may kill more tumor cells.

COMPLETED
Nab-sirolimus in Recurrent High Grade Glioma and Newly Diagnosed Glioblastoma
Description

Phase 2, open-label study of nab-sirolimus in patients with recurrent high grade glioma following prior therapy and patients with newly diagnosed glioblastoma. nab-Sirolimus was administered as single agent or in combination therapies.

RECRUITING
A Study of Debio 0123 in Combination With Temozolomide in Adult Participants With Recurrent or Progressive Glioblastoma and of Debio 0123 in Combination With Temozolomide and Radiotherapy in Adult Participants With Newly Diagnosed Glioblastoma
Description

The primary purpose of the Phase 1 (Dose Escalation) of this study is to identify the dose-limiting toxicities (DLTs) of Debio 0123 combined with temozolomide (TMZ) (Arm A) and with TMZ and radiotherapy (RT) (Arms B and C) and to characterize the safety and tolerability of these combinations in adult participants with glioblastoma (GBM). Arm B which was previously added to the protocol, has been permanently halted per the safety monitoring committees' decision on the safety findings of this arm. The primary purpose of Phase 1 (Dose expansion) of the study is to assess the doses studied under Phase 1 (Dose Escalation) Arm A and identify the recommended dose (RD) for further development. The Phase 2 will start once the RD Phase 1 has been defined. The primary objective of Phase 2 is to assess the efficacy of Debio 0123 at the RD for further development in combination with TMZ, compared to the standard of care (SOC) in adult participants with GBM.

COMPLETED
Changes in Semen or Sperm Caused by Temozolomide in Patients With Newly Diagnosed, Progressive, or Recurrent Primary Malignant Brain Tumors
Description

RATIONALE: Learning whether temozolomide changes semen or sperm in patients with brain tumors may help doctors learn about the long-term effects of treatment and plan the best treatment. PURPOSE: This clinical trial is studying changes in semen or sperm caused by temozolomide in patients with newly diagnosed, progressive, or recurrent primary malignant brain tumors.

RECRUITING
AZD1390 in Recurrent and Newly Diagnosed WHO Grade 4 Glioma Patients
Description

This is an open-label, single-center Phase 0/1b study that will enroll at least 27 participants with recurrent WHO Grade 4 Glioma requiring re-radiation and approximately 35 participants with newly-diagnosed WHO Grade 4 glioma (nGBM). The trial will be composed of a Phase 0 component (subdivided into Arms A - C), and an expansion Phase 1b. Patients with tumors demonstrating a positive PK response in the Phase 0 component of the study will be eligible to graduate to an expansion phase that combines therapeutic dosing of AZD1390 plus standard-of-care fractionated radiotherapy (RT).

COMPLETED
Temozolomide Plus Peripheral Stem Cell Transplantation in Treating Children With Newly Diagnosed Malignant Glioma or Recurrent CNS or Other Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of temozolomide when given with peripheral stem cell transplantation and to see how well they work in treating children with newly diagnosed malignant glioma or recurrent CNS tumors or other solid tumors.