7 Clinical Trials for Various Conditions
This study is designed to pilot an intervention technique to reduce the self-stimulating behaviors seen in individuals with autism spectrum disorders using intervention with ProFoveate pellets. Self-stimulating behaviors like hand flapping, eye blinking, and rocking, can interfere with the individual's ability to interact with their peers. Participants will wear the pellets for four week and measures with taken again. Another group of participants will not get the pellets. Both groups will be tested at the beginning and end of the study. Any variations in self-stimulating behaviors will be documented through parent report, Observational data. The investigators hypothesize that they will see changes in self- stimulating behaviors as a result of the strategic placement of the ProFoveate™ pellets on the ears of one group of the participants.
Observational study. The purpose of this study is to evaluate the use of real-time surgical navigation for the localization and surgical removal of soft tissue tumors. The goal is to collect information about the efficiency and effectiveness of the EnVisio Surgical Navigation for intraoperative guidance to obtain negative margin on initial specimen. Prospective Patient Study: 200 consecutive patients
The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech can detect amyloid-specific cognitive impairment in early stage Alzheimer's disease, based on archival spoken or written language samples, as measured by the area under the curve (AUC) of the receiver operating characteristic curve of the binary classifier distinguishing between amyloid positive and amyloid negative arms. Secondary objectives include (1) evaluating how many years before diagnosis of Mild Cognitive Impairment (MCI) such algorithms work, as measured on binary classifier performance of the classifiers trained to classify MCI vs cognitively normal (CN) arms using archival material from the following time bins before MCI diagnosis: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years; (2) evaluating at what age such algorithms can detect later amyloid positivity, as measured on binary classifier performance of the classifiers trained to classify amyloid positive vs amyloid negative arms using archival material from the following age bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old.
The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech, can predict change in Preclinical Alzheimer's Clinical Composite with semantic processing (PACC5) between baseline and +12 month follow up across all four Arms, as measured by the coefficient of individual agreement (CIA) between the change in PACC5 and the corresponding regression model, trained on baseline speech data to predict it. Secondary objectives include (1) evaluating whether similar algorithms can predict change in PACC5 between baseline and +12 month follow up in the cognitively normal (CN) and MCI populations separately; (2) evaluating whether similar algorithms trained to regress against PACC5 scores at baseline, still regress significantly against PACC5 scores at +12 month follow-up, as measured by the coefficient of individual agreement (CIA) between the PACC5 composite at +12 months and the regression model, trained on baseline speech data to predict PACC5 scores at baseline; (3) evaluating whether similar algorithms can classify converters vs non-converters in the cognitively normal Arms (Arm 3 + 4), and fast vs slow decliners in the MCI Arms (Arm 1 + 2), as measured by the Area Under the Curve (AUC) of the receiver operating characteristic curve, sensitivity, specificity and Cohen's kappa of the corresponding binary classifiers. Secondary objectives include the objectives above, but using time points of +24 months and +36 months; and finally to evaluate whether the model performance for the objectives and outcomes above improved if the model has access to speech data at 1 week, 1 month, and 3 month timepoints.
The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech can detect amyloid-specific cognitive impairment in early stage Alzheimer's disease, as measured by the AUC of the receiver operating characteristic (ROC) curve of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) Arms. Secondary objectives include (1) evaluating whether similar algorithms can detect amyloid-specific cognitive impairment in the cognitively normal (CN) and MCI Arms respectively, as measured on binary classifier performance; (2) whether they can detect MCI, as measured on binary classifier performance (AUC, sensitivity, specificity, Cohen's kappa), and the agreement between the PACC5 composite and the corresponding regression model predicting it in all Arms pooled (Wilcoxon signed-rank test, CIA); (3) evaluating variables that can impact performance of such algorithms of covariates from the speaker (age, gender, education level) and environment (measures of acoustic quality).
Previous research involving families, twins, and adoption all support the idea that there is a substantial heritable aspect to personality. The goal of this research study is to determine how genetics influence heritable personality traits. The work will focus on how genetics affect the chemical messengers which brain cells use to communicate with each other (neurotransmitters). The study involves collecting personality data and DNA samples from related individuals, primarily male siblings and female siblings, but also including parents. Genetic tests performed on these samples will continue to focus on variations in genes, which potentially effect brain neurotransmission. This research has the potential to advance knowledge of genetic influences on human behavior that may be relevant both to normal personality and to psychopathology.
This study will allow researchers to use various types of tests to evaluate cognitive and sensory functions. These tests, referred to as "batteries" will evaluate attention, executive functions, general intellectual functioning, language, memory, motor functions, orientation, personality, selected sensory and perceptual functions, vigilance (alertness), and visual-spatial functions. Children and adult patient will receive different test batteries. The goals of this research study are to; 1. Create descriptions based on the performance of each patient on the test batteries. Then use this information to relate patient behavior to their neurophysiological, neuroradiological, and biochemical descriptions. 2. Define subgroups of patients based on their neurobehavior in order to decrease the variability of psychiatric diagnoses, treatments, and prognoses.