50 Clinical Trials for Various Conditions
There is a robust body of research suggesting that the use of pre-surgical orthopedic devices prior to definitive cleft lip/nose repair results in significant improvement of facial aesthetics with long term follow up. However, in recent surveys of the cleft centers in the US, only 30% of cleft centers offer PSIOs, and only 13% routinely report its use. Accordingly, thirty percent of centers utilize a two-stage cleft lip/nose repair in the centers' algorithm (1st: lip adhesion; 2nd: final lip repair). The major drawback to a two-stage cleft procedure is the administration of two general anesthetics to an infant before the age of one year. There is a growing amount of evidence that multiple anesthetic experiences before a certain age could affect brain development. It is difficult to make inferences as to why clinicians are not utilizing surgical aids to decrease the size of the cleft width, but even when PSIO is offered, caregivers experience additional, potentially prohibitive challenges. In one study, caregivers traveled an average of 70 miles to visit the nearest cleft center offering pre-surgical orthopedic devices. As these devices are created by hand every 1-2 weeks after seeing the child in clinic, parents are required to travel to clinic multiple times per month. Not surprisingly, infants who were first-born and those who did not have other siblings were more likely to receive pre-surgical orthopedic treatment than infants who were residing with other siblings. Given the benefits of PSIOs and the barriers both to healthcare systems and patients' families associated with PSIOs in its current form, a new form of pre-surgical clinical management is needed. Objectives: 1. Evaluate JHH's current clinical performance in addressing unilateral cleft lip and nasal deformity. 2. Elucidate the difference in preoperative cleft size and in surgical management/outcomes for patients who received PSIOs through 3D-printed devices. 3. Using the above maxillofacial growth data with and without PSIOs, the investigators aim to create an algorithm to predict maxillofacial growth for each individual patient to design pre-sequenced custom PSIO devices.
The purpose of this study is to use computers to simulate airflow in 3D construction of your nasal cavity generated from cone beam CT images. The results from computer simulations will help researchers identify the severity of cleft-induced nasal dysfunction and assess the impact of current treatment in restoring breathing function. The ultimate goal is to improve post-surgery outcomes to restore nasal breathing function to normal levels.
A key factor in determining success of facial plastic plastic surgery is overall patient satisfaction. While a number of patient-reported outcomes tools has been developed, there is still limited research in how physicians can improve patient satisfaction and post-operative outcomes. The goal of this study is to investigate the effect of a mindfulness meditation phone application on rhinoplasty outcomes. This study will also explore whether mindfulness meditation is a feasible adjunct to current pharmacological modalities of postoperative pain control as well as its potential impact on patient satisfaction. These questions will be answered using a randomized controlled trial.
Facial scans of newborns will be performed before and after implementation of respiratory support devices such as nasal CPAP. 3D scanned images will be processed by Fisher \& Paykel Healthcare Limited. Images will be analyzed for changes or distortion in nasal structure.
Traditional suture closure of the columellar scar in rhinoplasty is achieved with permanent skin sutures. These sutures create less inflammation and are thought to lead to improved final scar outcomes. However, permanent sutures require removal which creates pain and inconvenience for the patient. Some surgeons use fast absorbing sutures that do not require removal. The difference in final scar outcome based on suture material used has not been well studied. This study will examine the final scar outcomes of rhinoplasty incisions sutured with traditional permanent suture compared to fast absorbing suture. If scar outcomes are similar between these groups as judged by the patients and blinded observers, rhinoplasty surgeons may be able to preferentially utilize absorbable sutures for incision closure and avoid the pain and inconvenience for the patient during suture removal
This study evaluates the efficacy of the AuryzoN devices in the ear and nose reconstruction surgeries, both in terms of operative time and overall quality of reconstruction. Research participants will undergo reconstruction either using the AuryzoN device or through current methods (traditional manual processing) at the discretion of their surgeon prior to the start of surgery.
The purpose of this research is to determine the effects of Restylane-L® Filler Injection for Non-Surgical Rhinoplasty on First Impressions and Quality of Life determined by using the FACE-Q Scale. Secondary objectives include: To determine the efficacy of Restylane-L® Filler injection to the nose in reduction of convexity of the nasal dorsum as measured on pre/post injection 2D photographs. To measure changes in nasal projection and rotation after injection with Restylane-L® Filler in subset of patients who underwent nasal tip augmentation. To determine the safety of Restylane-L® Filler injection to the nose for non-surgical rhinoplasty.
The purpose of this study is to research a polyester polyethylene terephthalate (PET) implant for the treatment of external nasal valve collapse (NVC). NVC is a condition which causes narrowness and weakness in the nostril which results in nasal obstruction. Implants will be placed in the affected nostril(s). The implants are intended to restore the shape and stabilize the nasal wall to prevent nasal valve collapse and improve the symptoms associated with nasal obstruction.
Turbinates are large structures in the nasal airway that help the nose to clean and humidify the air we breathe. Inferior turbinates can swell up and block the breathing passage, making it hard to breath. To address this, turbinate size must be reduced. This study looks at two common procedures for turbinate reduction: 1. Radiofrequency Ablation (RFA) involves inserting a special needle into the inferior (lower) turbinate that releases thermal energy, which significantly reduces its size. This can be done under local anesthesia at the doctor's office. 2. Partial Resection of Inferior Turbinate (PRIT) involves surgically removing a piece off the turbinate, which also reduces its size. While both procedures improve nasal obstruction, no study has directly compared which is more effective. Eighty patients being treated for septal deformity and turbinate hypertrophy will be randomly chosen for either PRIT or RFA treatment. They will fill out a simple, five question survey that measures how they view their nasal blockage 4 times in one year. We believe that since PRIT permanently removes a part of the turbinate, PRIT patients will report more improvement than RFA patients one year later. We believe that complications (measured by the doctor) will be the same for both treatments.
This phase II trial studies the side effects and the best dose of alemtuzumab when given together with fludarabine phosphate and low-dose total body irradiation (TBI) and how well it works before donor stem cell transplant in treating patients with hematological malignancies. Giving chemotherapy and low-dose TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Also, monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant may stop this from happening.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions. PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This phase I trial studies the side effects and the best dose of sunitinib malate in treating human immunodeficiency virus (HIV)-positive patients with cancer receiving antiretroviral therapy. Sunitinib malate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
This phase I multicenter feasibility trial is studying the safety and potential efficacy of infusing ex vivo expanded cord blood progenitors with one unmanipulated umbilical cord blood unit for transplantation following conditioning with fludarabine, cyclophosphamide and total body irradiation (TBI), and immunosuppression with cyclosporine and mycophenolate mofetil (MMF) for patients with hematologic malignancies. Chemotherapy, such as fludarabine and cyclophosphamide, and TBI given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts are more likely to recover more quickly if increased numbers of cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one unexpanded cord blood unit is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two cord blood units makes up the patient's new blood system, and how quickly immune system cells return
This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.
This study uses a drug called dasatinib to produce an anti-cancer effect called large granular lymphocyte cellular expansion. Large granular lymphocytes are blood cells known as natural killer cells that remove cancer cells. Researchers think that dasatinib may cause large granular lymphocyte expansion to happen in patients who have received a blood stem cell transplant (SCT) between 3 to 15 months after the SCT. In this research study, researchers want to find how well dasatinib can be tolerated, the best dose to take of dasatinib and how to estimate how often large granular lymphocytic cellular expansion happens at the best dose of dasatinib.
RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.
RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.
RATIONALE: Giving chemotherapy, such as busulfan and fludarabine phosphate, before a peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate, tacrolimus, and antithymocyte globulin before and after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect). Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect. PURPOSE: This phase II trial is studying how well donor stem cell transplant works in treating patients with relapsed hematologic malignancies or secondary myelodysplasia previously treated with high-dose chemotherapy and autologous stem cell transplant .