11 Clinical Trials for Various Conditions
Conventional therapy is effective for diffuse aggressive lymphomas and low grade lymphomas, but is limited by relapse occurs in 40 to 50% of subjects. This study assesses autologous stem cell transplant (ASCT) supplemented with high-dose therapy increases the event-free survival in diffuse aggressive lymphomas and low grade lymphomas, as an alternative to the limitations of conventional therapy. Preliminary studies with rituximab in low grade lymphomas indicate a response rate of about 50% with very little toxicity. Rituximab is hypothesized to be a candidate for post-transplant therapy because the majority of malignant lymphomas express the CD20 antigen; rituximab has impressive independent anti-tumor activity; and the antibody has little toxicity outside of the acute administration.
Study of the safety and efficacy of AEB071 and EVEROLIMUS in patients with CD79-mutant or ABC subtype Diffuse Large B-Cell Lymphoma. The trial did not progress into Phase II due to the suboptimal tolerability of the combination treatment of sotrastaurin and everolimus in the Phase Ib part of the study. There were no serious safety concerns associated with this combination.
NOT YET RECRUITING - This phase II trial tests how well nemtabrutinib in combination with pembrolizumab works in treating patients with Richter transformation, diffuse large B-cell lymphoma subtype (RT-DLBCL). Nemtabrutinib is in a class of medications called kinase inhibitors. It blocks a protein called BTK, which is present on B-cells (a type of white blood cell) in cancers such as Richter transformation at abnormal levels. This may help keep cancer cells from growing and spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Giving nemtabrutinib in combination with pembrolizumab may kill more cancer cells in patients with RT-DLBCL.
To characterize the safety profile of acalabrutinib in subjects with relapsed or refractory de Novo Activated B-cell (ABC) Subtype of Diffuse Large B-Cell Lymphoma (DLBCL).
The purpose of this study is to evaluate if ibrutinib administered in combination with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) improves the clinical outcome in newly diagnosed patients with non-germinal center B-cell subtype (GCB) of diffuse large B-cell lymphoma (DLBCL) selected by immunohistochemistry (IHC) or newly diagnosed patients with activated B cell-like (ABC) subtype of DLBCL identified by gene expression profiling (GEP) or both populations.
Objectives of this clinical trial are to evaluate the safety, tolerability, pharmacokinetics and potential efficacy of the investigational drug, cobomarsen (MRG-106), in patients diagnosed with certain lymphomas and leukemias, including cutaneous T-cell lymphoma (CTCL) \[mycosis fungoides (MF) subtype\], chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) \[activated B-cell (ABC) subtype\], and adult T-cell leukemia/lymphoma (ATLL). Cobomarsen is an inhibitor of a molecule called miR-155 that is found at high levels in these types of cancers and may be important in promoting the growth and survival of the cancer cells. Participants in the clinical trial will receive weekly doses of cobomarsen administered by injection under the skin or into a vein, or by injection directly into cancerous lesions in the skin (for CTCL only). Blood samples will be collected to measure how cobomarsen is processed by the body, and other measurements will be performed to study how normal and cancerous cells of the immune system respond when exposed to cobomarsen.
The goal of this clinical research study is to find the highest tolerable dose of lenalidomide that can be given in combination with vorinostat, gemcitabine, busulfan, and melphalan, with a stem cell transplant, and with or without rituximab. Researchers also want to learn about the safety and effectiveness of this combination.
The purpose of this research is to evaluate if study therapy, 19(T2)28z1xx TRAC-chimeric antigen receptor (CAR) T cells, may be an effective treatment for people with relapsed/refractory B-cell lymphoma. Researchers will also evaluate if this study therapy is safe, and to look for the highest dose that causes few or mild side effects in participants.
This research is being done to assess the effectiveness and safety of acalabrutinib combined with lisocabtagene maraleucel (liso-cel) for people with relapsed/refractory aggressive B-cell lymphoma. This research study involves the study drug acalabrutinib in combination with lisocabtagene maraleuce
This is a pilot study; patients will receive 131-I apamistamab prior to CAR T-cell infusion in order to determine the maximum tolerated dose of 131-I apamistamab is exceeded at 75 mCi, and if so, to assess the safety of a step-down dose of 50 mCi.
Many tumor cells, in contrast to normal cells, have been shown to require the amino acid glutamine to produce energy for growth and survival. To exploit the dependence of tumors on glutamine, CB-839, a potent and selective inhibitor of the first enzyme in glutamine utilization, glutaminase, will be tested in this Phase 1 study in patients with advanced hematologic malignancies. This study is an open-label Phase 1 evaluation of CB-839 in subjects with hematological tumors. Patients will receive CB-839 capsules orally two or three times daily. The study will be conducted in 2 parts. Part 1 is a dose escalation study to identify the recommended Phase 2 dose and will enroll patients with advanced and/or treatment-refractory Non-Hodgkin's Lymphoma (NHL), Multiple Myeloma (MM), or Waldenström's macroglobulinemia (WM) In Part 2, all patients will receive the recommended Phase 2 dose. This part will enroll patients with advanced and/or treatment-refractory Non-Hodgkin's Lymphoma (NHL), Multiple Myeloma (MM), or Waldenström's macroglobulinemia (WM). All patients will be assessed for safety, pharmacokinetics (plasma concentration of drug), pharmacodynamics (inhibition of glutaminase), biomarkers (biochemical markers that may predict responsiveness in later studies), and tumor response. As an extension of Part 2, a cohort of patients with relapsed and refractory MM will be enrolled to receive low dose dexamethasone and CB-839. A second cohort of patients with relapsed or refractory disease following at least 2 prior treatment regimens will be enrolled to receive CB-839 in combination with standard-dose pomalidomide and low-dose dexamethasone to further evaluate this triple combination.