10 Clinical Trials for Various Conditions
Background: Cancer in the liver can start in the liver (e.g., primary liver cancer or hepatocellular cancer) or spread to the liver from cancers in other parts of the body (e.g. colon, pancreas, gastric, breast, ovarian, esophageal cancers, cancer with metastases to the liver.) People who have tumors that can be removed by surgery live longer than those whose cancer cannot be removed. Chemotherapy can shrink some tumors in the liver, which also helps people to live longer, and sometimes chemotherapy can shrink tumors enough that they can be removed by surgery. However, most chemotherapy drugs do not work well on tumors in the liver. In this study we are testing a new drug, TKM-080301, given directly into the cancer blood supply in the liver circulation, to see if it will cause tumors to shrink. Objectives: - To test the safety and effectiveness of TKM-080301 for cancer in the liver that has not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have inoperable cancer that has started in or spread to the liver. Design: * Participants will be screened with a medical history and physical exam. They will also have blood tests, and imaging studies. * Participants will have a liver angiogram (type of X-ray study) to look at the blood flow in the liver and to place a catheter for delivery of the TKM080301. * Participants will have a single dose of TKM-080301 given directly into the liver. After the drug has been given, the catheter will be removed. They will have frequent blood tests and keep a diary to record side effects. * Participants may have two more doses, each dose given 2 weeks apart. {Before each dose, participants will have another angiogram and catheter placement.}They may also have liver biopsies to study the tumors. * Two weeks after the third treatment (one full course), participants will have a physical exam, blood tests, and imaging studies. If the tumor is shrinking, they may have up to three more courses of the study drug. * Participants will have follow up visits every 3 months for 2 years after the last course and then every 6 months as required.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Poly ICLC may stop the growth of liver cancer by blocking blood flow to the tumor. Giving the drug directly into the arteries around the tumor may kill more tumor cells. Giving cyclophosphamide and radiation therapy together with poly ICLC may be an effective treatment for liver cancer. PURPOSE: This phase I/II trial is studying the side effects of giving cyclophosphamide, radiation therapy, and poly ICLC together and to see how well they work in treating patients with unresectable, recurrent, primary, or metastatic liver cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of ILX-295501 in treating patients who have stage III or stage IV ovarian cancer that has not responded to previous therapy.
This multi-center photodynamic therapy study plans to treat patients with large tumors in any superficial location, sarcoma, tumors of oral/oro-pharyngeal cavity, tumors with extensive pelvic involvement, or liver metastasis. The treatment is limited to patients that have failed to respond to currently approved methods of treatment. The study involves a single, intravenous administration of an investigational drug, LS11 (previously studied in approximately 80 cancer patients) and the placement of a novel, flexible light delivery catheter inside the tumor by a minor surgical procedure. The activation of LS11 by the light delivery catheter over a period of 1-24 hrs may result in destruction of tumor tissue.
This study is an open-label, Phase 1, multicenter study to evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamic (PD) profiles of a novel fragment crystallizable (Fc)-engineered immunoglobulin G1 anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA-4) human monoclonal antibody (botensilimab) monotherapy and in combination with an anti-programmed cell death protein-1 (PD-1) antibody (balstilimab), and to assess the maximum tolerated dose (MTD) in participants with advanced solid tumors. This study will also determine the recommended phase 2 dose (RP2D) of botensilimab monotherapy and in combination with balstilimab.
RATIONALE: Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase II trial is studying how well conformal radiation therapy works in treating patients with metastatic cancer outside the brain.
RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase I trial to study the effectiveness of biological therapy in treating patients who have metastatic cancer that has not responded to previous treatment.
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
This is a study to determine the maximum tolerated dose (MTD) for CDX-1140 (CD40 antibody), either alone or in combination with CDX-301 (FLT3L), pembrolizumab, or chemotherapy and to further evaluate its tolerability and efficacy in expansion cohorts once the MTD is determined.
The main purpose of this study is to see whether Axitinib will help prolong the time that the patient's carcinoid tumors remain stable, and to examine their treatment response through testing. Researchers also want to find out if Axitinib is safe and tolerable.