108 Clinical Trials for Various Conditions
To learn if the combination of dostarlimab and LB-100 can help to control ovarian clear cell carcinoma
This is a study to determine the safety of CDX-014 and effectiveness (how well the drug works).
This research study is being done to test the efficacy and safety of combining the study drugs pembrolizumab and lenvatinib in patients with clear cell ovarian cancer. The names of the study drugs involved in this study are: * Lenvatinib * Pembrolizumab
This is a multicenter, open-label, Phase 1 study that will be conducted in two parts. Part 1 is the dose escalation of APG-5918. Part 2 is the dose expansion of APG-5918. APG-5918 will be administered orally. Patients will be treated in 28-day cycles.
The OnPrime study is a multi-center, randomized open-label phase 3 study evaluating the safety and efficacy of Olvi-Vec followed by platinum-doublet chemotherapy and bevacizumab compared to the Active Comparator Arm with Physician's Choice of chemotherapy and bevacizumab in women diagnosed with platinum-resistant/refractory ovarian cancer (includes fallopian tube cancer and primary peritoneal cancer). This Phase III trial builds on the efficacy and safety data reported in the previous Phase II VIRO-15 trial with promising objective response rate and progression-free survival observed in heavily pre-treated patients with platinum-resistant/refractory ovarian cancer. The phase II results also showed that the intra-peritoneal route of delivery was efficient in generating tumor cell killing and immune activation, and led to clinical reversal of platinum-resistance or refractoriness in this difficult-to-treat patient population.
The purpose of the dose escalation phase is to evaluate the safety profile of escalating doses and dose schedules of NXP800. In the expansion phase the preliminary efficacy in subjects with ARID1a mutated ovarian clear cell and ovarian endometrioid cancers will be estimated.
The purpose of this open-label, first-in-human (FIH) trial is to evaluate the safety, tolerability, and preliminary clinical activity of Tulmimetostat as a monotherapy in patients with advanced solid tumors and lymphomas.
The purpose of this research study is to evaluate safety, pharmacokinetics, pharmacodynamics and preliminary efficacy of the investigational drug PLX2853 in subjects with advanced malignancies.
The purpose of this research study is to see if the study drug Belzutifan is effective and safe for participants with ovarian cancer. The name of the study drug involved in this study is: - Belzutifan (a type of Hypoxia-Inducible Factor-2 alpha (HIF-2a) inhibitor)
Preclinical and early-phase clinical data suggest that immune modulation represents a treatment strategy that is worthy of further investigation in relapsed epithelial ovarian cancer. One method by which tumor cells may evade immune surveillance is by activation of the programmed cell death (PD-1) pathway, mediated by expression of PD-1 on the surface of T lymphocytes, which conveys an inhibitory signal after binding to its ligand PD-L1 on the surface of tumor cells. Nivolumab and Ipilimumab have shown activity as monotherapies in solid tumors and very early data suggest that nivolumab may be particularly active for ovarian clear cell carcinoma.(Hamanishi et al., 2015). Given the uniformly poor prognosis for patients with clear cell carcinoma in general, we are interested in formally evaluating this agent in all extra-renal clear cell carcinomas.
The purpose of this study is to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics of INCB099318 in select solid tumors.
RATIONALE: Biological therapies, such as denileukin difitox, may stimulate the immune system in different ways and may prevent tumor cells from growing. PURPOSE: This phase I trial is studying the side effects and best dose of denileukin diftitox in treating patients with advanced refractory ovarian cancer, primary peritoneal carcinoma, or epithelial fallopian tube cancer.
This phase I trial is studying the side effects and best dose of intraperitoneal infusions of carboplatin when given together with intravenous infusions of either docetaxel or paclitaxel followed by intraperitoneal paclitaxel in treating patients with stage II, stage III, or stage IV ovarian epithelial, fallopian tube, or primary peritoneal cavity carcinoma (cancer). Drugs used in chemotherapy, such as carboplatin, docetaxel, and paclitaxel, work in different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug and giving them in different ways may kill more tumor cells
This phase II trial is studying the side effects of giving erlotinib together with carboplatin and paclitaxel and to see how well it works in treating patients with stage III or stage IV ovarian, fallopian tube, or primary peritoneal cancer. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor. Drugs used in chemotherapy such as carboplatin and paclitaxel use different ways to stop tumor cells from dividing so they stop growing or die.
This phase II trial compares the effect of folate receptor alpha dendritic cells (FRαDCs) to placebo in treating patients with stage III or IV ovarian, fallopian tube or primary peritoneal cancer. FRαDCs, a dendritic cell vaccine, is made from a person's white blood cells. The white blood cells are treated in the laboratory to make dendritic cells (a type of immune cell) mixed with folate receptor alpha (FRalpha), a protein found in high levels on ovarian tumor cells. FRαDCs work by boosting the immune system to recognize and destroy the tumor cells by targeting the FRalpha protein on the tumor cell. Placebo is an inactive substance that looks the same as, and is given the same way as, the active drug or treatment being tested. The effects of the active drug are compared to the effects of the placebo. Giving FRαDCs may work better in preventing or delaying recurrence compared to placebo in patients with stage III or IV ovarian, fallopian tube, or primary peritoneal cancer.
This phase Ib trial tests the safety, side effects, and best dose of M1774 when given with ZEN-3694 in treating patients with ovarian and endometrial cancer that has come back (recurrent). M1774 and ZEN-3694 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. M1774 and ZEN-3694 combined together has demonstrated to be better than either drug alone in killing ovarian tumor cells.
This phase II trial tests whether pembrolizumab combined with bevacizumab with or without agonist anti-CD40 CDX-1140 works to shrink tumors in patients with ovarian cancer that has come back (recurrent). Anti-CD40 CDX-1140 works by stimulating certain immune cells within the tumor and, when combined with other immunotherapy treatments, may increase antitumor antibody production. Immunotherapy with monoclonal antibodies, such as pembrolizumab and bevacizumab, may help the body's immune system, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and bevacizumab with anti-CD40 CDX-1140 may decrease symptoms, prolonged survival, and improve quality of life in patients with ovarian cancer.
To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.
This is a Phase 2, multicenter, two-stage, open-label, parallel-group study designed to evaluate the efficacy and safety of vudalimab (XmAb20717) in patients with selected advanced gynecologic and genitourinary malignancies.
This phase III trial compares minimally invasive surgery (MIS) to laparotomy in treating patients with stage IIIC-IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy before and after surgery (neoadjuvant chemotherapy). MIS is a surgical procedure that uses small incision(s) and is intended to produce minimal blood loss and pain for the patient. Laparotomy is a surgical procedure which allows the doctors to remove some or all of the tumor and check if the disease has spread to other organs in the body. MIS may work the same or better than standard laparotomy after chemotherapy in prolonging the return of the disease and/or improving quality of life after surgery.
This phase II trial studies how well pembrolizumab and epacadostat work in treating patients with ovarian clear cell carcinoma that has come back (recurrent), remains despite treatment (persistent), or is growing, spreading, or getting worse (progressive). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Epacadostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and epacadostat may work better compared to usual treatment (surgery, radiation, or cytotoxic chemotherapy) in treating patients with ovarian clear cell carcinoma.
This phase I trial studies the side effects and the best dose of giving EGEN-001 together with pegylated liposomal doxorubicin hydrochloride in treating patients with ovarian epithelial, fallopian tube, or primary peritoneal cancer that has returned after a period of improvement or has not responded to treatment. Biological therapies, such as EGEN-001, may stimulate the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving EGEN-001 together with pegylated liposomal doxorubicin hydrochloride may kill more tumor cells.
This phase I trial studies the side effects and the best dose of veliparib when given together with pegylated liposomal doxorubicin hydrochloride, carboplatin, and bevacizumab in treating patients with ovarian cancer, primary peritoneal cancer, or fallopian tube cancer that has returned after previous treatment. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride and carboplatin, may stop the growth of tumor cells by, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, can block tumor growth by blocking the ability of tumor cells to grow and spread. Bevacizumab may also stop the growth of tumors by blocking the growth of new blood vessels necessary for tumor growth. Giving veliparib together with pegylated liposomal doxorubicin hydrochloride, carboplatin, and bevacizumab may kill more tumor cells.
This phase II trial studies how well first-line treatment of bevacizumab, carboplatin, and paclitaxel work in treating participants with stage III- IV ovarian, primary peritoneal and fallopian tube cancer. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bevacizumab, carboplatin, and paclitaxel as first-line treatment may work better at treating ovarian, primary peritoneal, and fallopian tube cancer.
This phase I trial studies the side effects and best dose of veliparib when given together with carboplatin, paclitaxel, and bevacizumab in treating patients with newly diagnosed stage II-IV ovarian epithelial, fallopian tube, or primary peritoneal cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cells to repair themselves from damage and survive. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab, a type of drug called a monoclonal antibody, blocks tumor growth by targeting certain cells and preventing the growth of new blood vessels that tumors need to grow. Giving veliparib together with carboplatin, paclitaxel, and bevacizumab may kill more tumor cells.
This phase II trial studies the side effects of sunitinib malate and how well it works in treating patients with ovarian cancer that is persistent or has come back. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase II trial is studying the side effects and how well A6 works in treating patients with persistent or recurrent ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer. A6 may stop the growth of tumor cells by blocking blood flow to the tumor.
This laboratory study is collecting tumor tissue and blood samples from patients with gynecologic tumors. Collecting and storing samples of tumor tissue and blood from patients with cancer to study in the laboratory may help in the study of cancer.
This phase I trial is studying the side effects and best dose of polyglutamate paclitaxel when given together with carboplatin in treating patients with ovarian epithelial, peritoneal, or fallopian tube cancer. Drugs used in chemotherapy such as polyglutamate paclitaxel and carboplatin use different ways to stop tumor cells from dividing so they stop growing or die. Polyglutamate paclitaxel may be able to deliver the drug directly to tumor cells while leaving normal cells undamaged. Combining polyglutamate paclitaxel with carboplatin may kill more tumor cells.
This phase I/II trial tests the safety, side effects, best dose, and effectiveness of multi-epitope folate receptor alpha-loaded dendritic cell vaccine (FRalphaDC) with pembrolizumab in treating patients with ovarian, fallopian tube, or primary peritoneal cancer (collectively known as ovarian cancer) that that has come back (after a period of improvement) (recurrent). Ovarian cancer is the most lethal gynecologic malignancy in the United States. While the majority of patients achieve a remission from ovarian cancer with the combination of aggressive cytoreductive surgery and cytotoxic chemotherapy, over 80% of patients develop recurrence within 3 years of completion of treatment. Additional treatments are needed for recurrence, but the standard treatment modalities are non-curative in nature due to the development of drug resistance. As such, there is a great unmet need for treatment strategies that utilize new mechanisms to which drug resistance does not develop. FRalphaDC is a dendritic cell vaccine that is made from the white blood cells collected from a procedure call apheresis. The white blood cells are treated to make dendritic cells, which will then be incubated with peptides, which are pieces of a protein known as "folate receptor alpha" (FRalpha), a protein that is found in high levels on ovarian cancer cells. Dendritic cell vaccines work by boosting the immune system (a system in the body that protect against infection) to recognize and destroy the tumor cells by targeting the FRalpha protein. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving FRalphaDC vaccine with pembrolizumab may be a safe and effective treatment for recurrent ovarian cancer.