45 Clinical Trials for Various Conditions
This phase I trial studies the side effects and best dose of raptor/rictor-mammalian target of rapamycin (mTOR) (TORC1/2) inhibitor MLN0128 when given in combination with bevacizumab in treating patients with glioblastoma, a type of brain tumor, or a solid tumor that has spread and not responded to standard treatment. TORC1/2 inhibitor MLN0128 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also stop the progression of tumors by blocking the growth of new blood vessels necessary for tumor growth.
This pilot clinical trial studies the safety and immunogenicity of vaccine therapy in treating patients with stage IIIC-IV ovarian epithelial, fallopian tube, or primary peritoneal cavity cancer following surgery and chemotherapy. Vaccines made from a person's peptide treated white blood cells may help the body build an effective immune response to kill tumor cells.
This randomized phase II clinical trial studies how well gemcitabine hydrochloride and WEE1 inhibitor MK-1775 work compared to gemcitabine hydrochloride alone in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back after a period of time. Gemcitabine hydrochloride may prevent tumor cells from multiplying by damaging their deoxyribonucleic acid (DNA, molecules that contain instructions for the proper development and functioning of cells), which in turn stops the tumor from growing. The protein WEE1 may help to repair the damaged tumor cells, so the tumor continues to grow. WEE1 inhibitor MK-1775 may block the WEE1 protein activity and may increase the effectiveness of gemcitabine hydrochloride by preventing the WEE1 protein from repairing damaged tumor cells without causing harm to normal cells. It is not yet known whether gemcitabine hydrochloride with or without WEE1 inhibitor MK-1775 may be an effective treatment for recurrent ovarian, primary peritoneal, or fallopian tube cancer.
This phase I trial is studying the side effects and best dose of TLR8 agonist VTX-2337 and pegylated liposomal doxorubicin hydrochloride in treating patients with recurrent or persistent ovarian epithelial, fallopian tube, or peritoneal cavity cancer. Biological therapies, such as TLR8 agonist VTX-2337, may stimulate the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving TLR8 agonist VTX-2337 together with pegylated liposomal doxorubicin hydrochloride or paclitaxel may kill more tumor cells.
This clinical trial is studying how well granisetron, aprepitant, and dexamethasone work in preventing nausea and vomiting in patients receiving chemotherapy for stage II, stage III, or stage IV ovarian cancer. Granisetron patch, aprepitant and dexamethasone may help lessen or prevent nausea and vomiting in patients receiving chemotherapy for stage II, stage III, or stage IV ovarian cancer.
This phase I trial is studying the side effects and the best dose of veliparib when given together with capecitabine and oxaliplatin in treating patients with advanced solid tumors. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as capecitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with capecitabine and oxaliplatin may kill more tumor cells.
This randomized phase III trial studies carboplatin given together with paclitaxel with or without bevacizumab to see how well it works compared with oxaliplatin given together with capecitabine with or without bevacizumab as first-line therapy in treating patients with newly diagnosed stage II-IV, or recurrent (has come back) stage I epithelial ovarian or fallopian tube cancer. Drugs used in chemotherapy, such as carboplatin, paclitaxel, oxaliplatin, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, may block tumor growth in different ways by targeting certain cells. It is not yet known which regimen of combination chemotherapy given together with or without bevacizumab is more effective in treating epithelial ovarian cancer or fallopian tube cancer.
This clinical trial is studying changes in brain function in patients with stage I, stage II, stage III, or stage IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy. Learning about the effects of chemotherapy on brain function may help doctors plan cancer treatments.
This phase I trial studies the side effects and best dose of intraperitoneal bortezomib when given together with intraperitoneal carboplatin in treating patients with ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that is persistent or has come back. Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bortezomib may help carboplatin work better by making tumor cells more sensitive to the drug. Infusing bortezomib and carboplatin directly into the abdomen (intraperitoneal) may kill more tumor cells.
This phase II trial is studying how well giving belinostat together with carboplatin works in treating patients with recurrent or persistent ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer that did not respond to carboplatin or cisplatin. Belinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with carboplatin may kill more tumor cells.
This phase II trial is studying the side effects and how well A6 works in treating patients with persistent or recurrent ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer. A6 may stop the growth of tumor cells by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of cisplatin given together with paclitaxel in treating patients with stage IIB, stage IIC, stage III, or stage IV ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cavity cancer. Drugs used in chemotherapy, such as cisplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) and giving them in different ways may kill more tumor cells.
RATIONALE: Colony stimulating factors, such as sargramostim (GM-CSF), may stimulate the immune system in different ways and stop tumor cells from growing and may also increase the number of immune cells found in bone marrow or peripheral blood and help the immune system recover from the side effects of chemotherapy. Drugs used in chemotherapy, such as paclitaxel albumin-stabilized nanoparticle formulation, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving GM-CSF together with paclitaxel albumin-stabilized nanoparticle formulation may be an effective treatment for ovarian cancer, fallopian tube cancer, and primary peritoneal cancer. PURPOSE: This phase II trial is studying how well giving GM-CSF together with paclitaxel albumin-stabilized nanoparticle formulation works in treating patients with advanced ovarian cancer, fallopian tube cancer, or primary peritoneal cancer that did not respond to previous chemotherapy
RATIONALE: Biological therapies, such as denileukin difitox, may stimulate the immune system in different ways and may prevent tumor cells from growing. PURPOSE: This phase I trial is studying the side effects and best dose of denileukin diftitox in treating patients with advanced refractory ovarian cancer, primary peritoneal carcinoma, or epithelial fallopian tube cancer.
This phase I trial is studying the side effects and best dose of intraperitoneal infusions of carboplatin when given together with intravenous infusions of either docetaxel or paclitaxel followed by intraperitoneal paclitaxel in treating patients with stage II, stage III, or stage IV ovarian epithelial, fallopian tube, or primary peritoneal cavity carcinoma (cancer). Drugs used in chemotherapy, such as carboplatin, docetaxel, and paclitaxel, work in different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug and giving them in different ways may kill more tumor cells
This phase I trial is studying the side effects and best dose of adjuvant intraperitoneal carboplatin when given together with paclitaxel and bevacizumab in treating patients who have undergone debulking surgery for stage II , stage III, or stage IV ovarian epithelial, primary peritoneal, or fallopian tube cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop tumor cells from dividing so they stop growing or die. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether carboplatin, paclitaxel, and bevacizumab are more effective than carboplatin and paclitaxel in treating ovarian epithelial or primary peritoneal cancer, or fallopian tube cancer.
This phase I trial is studying the side effects and best dose of polyglutamate paclitaxel when given together with carboplatin in treating patients with ovarian epithelial, peritoneal, or fallopian tube cancer. Drugs used in chemotherapy such as polyglutamate paclitaxel and carboplatin use different ways to stop tumor cells from dividing so they stop growing or die. Polyglutamate paclitaxel may be able to deliver the drug directly to tumor cells while leaving normal cells undamaged. Combining polyglutamate paclitaxel with carboplatin may kill more tumor cells.
This phase II trial is studying the side effects of giving erlotinib together with carboplatin and paclitaxel and to see how well it works in treating patients with stage III or stage IV ovarian, fallopian tube, or primary peritoneal cancer. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor. Drugs used in chemotherapy such as carboplatin and paclitaxel use different ways to stop tumor cells from dividing so they stop growing or die.
Phase II trial to study the effectiveness of combination chemotherapy and peripheral stem cell transplantation in treating patients who have undergone surgery for stage III ovarian cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells.
Phase I trial to study the effectiveness of paclitaxel, cisplatin, and topotecan with or without filgrastim in treating patients who have newly diagnosed stage III or stage IV epithelial ovarian cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy
The purpose of this study is to compare the overall survival of patients treated with VTX-2337 + pegylated liposomal doxorubicin (PLD) versus those treated with PLD alone in women with recurrent or persistent, epithelial ovarian, fallopian tube or primary peritoneal cancer. VTX-2337, a small molecule agonist of Toll-like Receptor 8 (TLR8), activates multiple components of the innate immune system and is being developed as a novel therapeutic agent for use in oncology. Experimental data obtained in an animal model of ovarian cancer supports the combination of VTX-2337 with PLD. In this model, the combination of VTX-2337 and PLD resulted in a significant reduction in tumor growth compared to either agent alone and an increase in the number of T lymphocytes infiltrating the tumor. The combination of PLD and VTX-2337 has been tested in a small number of women with ovarian cancer in a Phase 1b study and appears to be generally well-tolerated.
RATIONALE: Collecting samples of tissue from patients with cancer to study in the laboratory may help doctors predict how well patients will respond to treatment with certain chemotherapy drugs and plan the best treatment. PURPOSE: This laboratory study is looking at tumor tissue samples to predict response to chemotherapy in patients with ovarian cancer, fallopian tube cancer, or primary peritoneal cancer.
RATIONALE: A gene-modified virus may be able to kill tumor cells without damaging normal cells. PURPOSE: This phase I trial is studying the side effects and best dose of an attenuated oncolytic measles virus therapy and oncolytic virus therapy in treating patients with progressive, recurrent, or refractory ovarian epithelial cancer or primary peritoneal cancer (measles virus vaccine therapy study closed as of 06/02/2008).
RATIONALE: Drugs used in chemotherapy, such as docetaxel and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving docetaxel together with carboplatin may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving docetaxel together with capecitabine works in treating patients with recurrent or persistent ovarian epithelial cancer, fallopian tube cancer, or peritoneal cavity cancer.
RATIONALE: Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or stopping them from dividing. Giving chemotherapy drugs before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase II trial is studying how well giving paclitaxel together with carboplatin before surgery works in treating patients with advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cavity cancer.
RATIONALE: Finding specific proteins in the blood may help doctors tell whether a patient has ovarian cancer. PURPOSE: This clinical trial is studying how well proteomic profiling works in diagnosing ovarian cancer in patients who are undergoing surgery for an abnormal pelvic mass.
RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as docetaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving erlotinib together with docetaxel and carboplatin may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of erlotinib when given together with docetaxel and carboplatin and to see how well they work in treating patients with newly diagnosed stage III or stage IV ovarian epithelial, primary peritoneal cavity, or fallopian tube cancer.
RATIONALE: Monoclonal antibodies, such as RAV12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of RAV12 in treating patients with metastatic or recurrent adenocarcinoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of TLK286 in treating patients who have advanced ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. IM-862 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill tumor cells. Combining chemotherapy and IM-862 may kill more tumor cells. PURPOSE: Randomized phase II trial to study the effectiveness of combination chemotherapy and IM-862 in treating patients who have resected stage III ovarian cancer or primary peritoneal cancer.