Treatment Trials

101 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Evaluation of Outcomes from Treatment of Benign or Malignant Gastroesophageal Diseases
Description

This study will be a retrospective chart review of patients who have been diagnosed with benign or malignant pancreatic disease under the practice of Dr. Rohan Jeyarajah, M.D., Dr. Houssam Osman M.D., and Dr. Edward Cho M.D., Sc.M. at Methodist Health System Hospital in Richardson, TX. The Investigators plan to conduct an analysis of patients meeting the inclusion criteria from 2005 to present. Study will also be conducted by the PI, Sub-Is, surgery fellows, office staff and clinical research coordinator who are delegated to do by the PI. Data will be obtained by looking through either the investigator's patients from their practice or through a national database. Data will be analyzed primarily by the study conductors.

ACTIVE_NOT_RECRUITING
Gemcitabine, Nab-paclitaxel, Durvalumab, and Oleclumab Before Surgery for the Treatment of in Resectable/Borderline Resectable Primary Pancreatic Cancer
Description

This phase II trial studies the effects of gemcitabine, nab-paclitaxel, durvalumab, and oleclumab in treating patients with primary pancreatic cancer that may be able to be removed by surgery (resectable/borderline resectable). Chemotherapy drugs, such as gemcitabine and nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as durvalumab and oleclumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving gemcitabine, nab-paclitaxel, durvalumab, and oleclumab may help control the disease in patients with resectable/borderline resectable primary pancreatic cancer.

WITHDRAWN
Selective Transvenous Chemoembolization of Primary Pancreatic Tumors
Description

Catheter directed retrograde venous infusion of gemcitabine/lipiodol into pancreatic tumors.

WITHDRAWN
Feasibility Study of LUM Imaging System for Pancreatic Cancer
Description

This single-site, non-randomized, open-label study to assess the initial safety and efficacy of the LUM Imaging System for detection of primary pancreatic cancer and peritoneal invasion from primary pancreatic cancer during surgery. In this feasibility study, the tumor detection algorithm will be developed for this indication.

RECRUITING
Prehabilitation for EOC, Fallopian Tube, Primary Peritoneal Carcinoma and Pancreatic Cancer w/ NACT
Description

The purpose of this study is to see whether participants who are assigned to a multimodal prehabilitation intervention during chemotherapy are able to adhere with exercise and nutrition program to prepare for their cancer surgery.

ACTIVE_NOT_RECRUITING
Niraparib and TSR-042 for the Treatment of BRCA-Mutated Unresectable or Metastatic Breast, Pancreas, Ovary, Fallopian Tube, or Primary Peritoneal Cancer
Description

This phase IB trial evaluates the effect of niraparib and TSR-042 in treating patients with BRCA-mutated breast, pancreas, ovary, fallopian tube, or primary peritoneal cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as TSR-042, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving niraparib and TSR-042 may kill more cancer cells.

COMPLETED
Nivolumab (Anti-PD1), Tadalafil and Oral Vancomycin in People With Refractory Primary Hepatocellular Carcinoma or Liver Dominant Metastatic Cancer From Colorectal or Pancreatic Cancers
Description

Background: A most common liver cancer in adults is hepatocellular carcinoma. Other kinds of liver cancer happen when colorectal or pancreatic cancer spreads to the liver. Researchers want to study if a combination of drugs helps people with these cancers. The drugs are nivolumab, tadalafil, and vancomycin. Objective: To investigate if nivolumab given with tadalafil and vancomycin causes liver cancer to shrink. Eligibility: Adults ages 18 years and older with hepatocellular carcinoma or metastases to the liver from colorectal or pancreatic cancer for which standard treatment has not worked Design: Participants will be screened with: Medical and cancer history Review of symptoms and ability to perform normal activities Physical exam Heart test. Some participants may meet with a cardiologist and/or have another heart test. Scan of the chest, abdomen, and pelvis Blood and urine tests Tumor sample review. This can be from a previous procedure. Participants will receive the study drugs in 4-week cycles. In each cycle participants will: Get nivolumab through a small plastic tube in the arm on Day 1. Take tadalafil by mouth 1 time every day. Take vancomycin by mouth 4 times a day. They will take it every day for weeks 1 3, then not take it for week 4. Complete a medicine diary of dates, times, missed doses and symptoms. Throughout the study, participants will repeat screening tests and will give stool samples or rectal swabs. After their last cycle, participants will have 3 follow-up visits over 3 months. Then they will be contacted every 6 months by phone or email and asked about their general well-being. ...

COMPLETED
TKM 080301 for Primary or Secondary Liver Cancer
Description

Background: Cancer in the liver can start in the liver (e.g., primary liver cancer or hepatocellular cancer) or spread to the liver from cancers in other parts of the body (e.g. colon, pancreas, gastric, breast, ovarian, esophageal cancers, cancer with metastases to the liver.) People who have tumors that can be removed by surgery live longer than those whose cancer cannot be removed. Chemotherapy can shrink some tumors in the liver, which also helps people to live longer, and sometimes chemotherapy can shrink tumors enough that they can be removed by surgery. However, most chemotherapy drugs do not work well on tumors in the liver. In this study we are testing a new drug, TKM-080301, given directly into the cancer blood supply in the liver circulation, to see if it will cause tumors to shrink. Objectives: - To test the safety and effectiveness of TKM-080301 for cancer in the liver that has not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have inoperable cancer that has started in or spread to the liver. Design: * Participants will be screened with a medical history and physical exam. They will also have blood tests, and imaging studies. * Participants will have a liver angiogram (type of X-ray study) to look at the blood flow in the liver and to place a catheter for delivery of the TKM080301. * Participants will have a single dose of TKM-080301 given directly into the liver. After the drug has been given, the catheter will be removed. They will have frequent blood tests and keep a diary to record side effects. * Participants may have two more doses, each dose given 2 weeks apart. {Before each dose, participants will have another angiogram and catheter placement.}They may also have liver biopsies to study the tumors. * Two weeks after the third treatment (one full course), participants will have a physical exam, blood tests, and imaging studies. If the tumor is shrinking, they may have up to three more courses of the study drug. * Participants will have follow up visits every 3 months for 2 years after the last course and then every 6 months as required.

COMPLETED
Gemcitabine Hydrochloride, Oxaliplatin, and Erlotinib Hydrochloride in Treating Patients With Advanced Biliary Tract Cancer, Pancreatic Cancer, Duodenal Cancer, or Ampullary Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as gemcitabine hydrochloride and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine hydrochloride and oxaliplatin together with erlotinib hydrochloride may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given together with gemcitabine hydrochloride and oxaliplatin in treating patients with advanced biliary tract cancer, pancreatic cancer, duodenal cancer, or ampullary cancer.

COMPLETED
Dalteparin for Primary Venous Thromboembolism (VTE) Prophylaxis in Pancreatic Cancer Patients
Description

The goal of this clinical research study is to learn if dalteparin can lower the risk of VTE occurring in the legs and lungs. This will be tested in patients with pancreatic cancer who are going to receive chemotherapy. Some patients will receive dalteparin and some will receive no study drug. The safety of dalteparin will also be studied.

COMPLETED
Studying Pain and Symptom Distress in Patients With Advanced Colon Cancer, Rectal Cancer, Pancreatic Cancer, or Liver Cancer
Description

RATIONALE: Studying a patient's understanding of his or her illness, pain, symptoms, and quality-of-life may help the study of advanced cancer and may help patients live more comfortably. PURPOSE: This clinical trial is studying pain and symptom distress in patients with advanced colon cancer, rectal cancer, pancreatic cancer, or liver cancer.

TERMINATED
Palonosetron Hydrochloride in Preventing Nausea and Vomiting Caused by Radiation Therapy in Patients With Primary Abdominal Cancer
Description

RATIONALE: Palonosetron hydrochloride may prevent nausea and vomiting caused by radiation therapy. It is not yet known whether palonosetron hydrochloride is more effective than a placebo in preventing nausea and vomiting. PURPOSE: This randomized phase II trial is studying the side effects of palonosetron hydrochloride and to see how well it works in preventing nausea and vomiting caused by radiation therapy in patients with primary abdominal cancer.

COMPLETED
Quality of Life in Patients Undergoing Radiation Therapy for Primary Lung Cancer, Head and Neck Cancer, or Gastrointestinal Cancer
Description

RATIONALE: Gathering information about patients' quality of life during radiation therapy for cancer may help doctors plan the best treatment. PURPOSE: This randomized clinical trial is studying quality of life in patients undergoing radiation therapy for primary lung cancer, head and neck cancer, or gastrointestinal cancer.

UNKNOWN
Cyclophosphamide, Radiation Therapy, and Poly ICLC in Treating Patients With Unresectable, Recurrent, Primary, or Metastatic Liver Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Poly ICLC may stop the growth of liver cancer by blocking blood flow to the tumor. Giving the drug directly into the arteries around the tumor may kill more tumor cells. Giving cyclophosphamide and radiation therapy together with poly ICLC may be an effective treatment for liver cancer. PURPOSE: This phase I/II trial is studying the side effects of giving cyclophosphamide, radiation therapy, and poly ICLC together and to see how well they work in treating patients with unresectable, recurrent, primary, or metastatic liver cancer.

COMPLETED
Genetic Analysis-Guided Dosing of FOLFIRABRAX in Treating Patients With Advanced Gastrointestinal Cancer
Description

This phase I/II trial studies the side effects of genetic analysis-guided dosing of paclitaxel albumin-stabilized nanoparticle formulation, fluorouracil, leucovorin calcium, and irinotecan hydrochloride (FOLFIRABRAX) in treating patients with gastrointestinal cancer that has spread to other parts of the body and usually cannot be cured or controlled with treatment. Drugs used in chemotherapy, such as paclitaxel albumin-stabilized nanoparticle formulation, fluorouracil, leucovorin calcium, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Genetic analysis may help doctors determine what dose of irinotecan hydrochloride patients can tolerate.

COMPLETED
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
Description

Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy

Conditions
Advanced Adult Primary Liver CancerAnaplastic Thyroid CancerBone MetastasesCarcinoma of the AppendixDistal Urethral CancerFallopian Tube CancerGastrinomaGlucagonomaInflammatory Breast CancerInsulinomaLiver MetastasesLocalized Unresectable Adult Primary Liver CancerLung MetastasesMale Breast CancerMalignant Pericardial EffusionMalignant Pleural EffusionMetastatic Gastrointestinal Carcinoid TumorMetastatic Parathyroid CancerMetastatic Transitional Cell Cancer of the Renal Pelvis and UreterNewly Diagnosed Carcinoma of Unknown PrimaryOccult Non-small Cell Lung CancerPancreatic Polypeptide TumorPrimary Peritoneal Cavity CancerProximal Urethral CancerPulmonary Carcinoid TumorRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adrenocortical CarcinomaRecurrent Adult Primary Liver CancerRecurrent Anal CancerRecurrent Bladder CancerRecurrent Breast CancerRecurrent Carcinoma of Unknown PrimaryRecurrent Cervical CancerRecurrent Colon CancerRecurrent Endometrial CarcinomaRecurrent Esophageal CancerRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Islet Cell CarcinomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Pancreatic CancerRecurrent Parathyroid CancerRecurrent Prostate CancerRecurrent Rectal CancerRecurrent Renal Cell CancerRecurrent Salivary Gland CancerRecurrent Small Intestine CancerRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Thyroid CancerRecurrent Transitional Cell Cancer of the Renal Pelvis and UreterRecurrent Urethral CancerRecurrent Vaginal CancerRecurrent Vulvar CancerSkin MetastasesSmall Intestine AdenocarcinomaSomatostatinomaStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Adrenocortical CarcinomaStage III Bladder CancerStage III Cervical CancerStage III Colon CancerStage III Endometrial CarcinomaStage III Esophageal CancerStage III Follicular Thyroid CancerStage III Gastric CancerStage III Malignant Testicular Germ Cell TumorStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Ovarian Epithelial CancerStage III Pancreatic CancerStage III Papillary Thyroid CancerStage III Prostate CancerStage III Rectal CancerStage III Renal Cell CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Vaginal CancerStage III Vulvar CancerStage IIIA Anal CancerStage IIIA Breast CancerStage IIIA Non-small Cell Lung CancerStage IIIB Anal CancerStage IIIB Breast CancerStage IIIB Non-small Cell Lung CancerStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Adrenocortical CarcinomaStage IV Anal CancerStage IV Bladder CancerStage IV Breast CancerStage IV Colon CancerStage IV Endometrial CarcinomaStage IV Esophageal CancerStage IV Follicular Thyroid CancerStage IV Gastric CancerStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Pancreatic CancerStage IV Papillary Thyroid CancerStage IV Prostate CancerStage IV Rectal CancerStage IV Renal Cell CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IVA Cervical CancerStage IVA Vaginal CancerStage IVB Cervical CancerStage IVB Vaginal CancerStage IVB Vulvar CancerThyroid Gland Medullary CarcinomaUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder CancerUrethral Cancer Associated With Invasive Bladder CancerWDHA Syndrome
RECRUITING
PET Imaging Using 64Cu-Tz-SarAr and hu5B1-TCO in People With Pancreatic, Colorectal, Bladder Cancer or Cancers With Elevated CA19.9
Description

The purpose of this study is to find the highest safe dose of hu5B1-TCO and the best dosing schedule of hu5B1-TCO and 64Cu-Tz-SarAr for finding cancer cells that are CA19-9 positive. This study will also help to find out how much radiation the body is exposed to when 64Cu-Tz-SarAr is used, and provide information on the way the body absorbs, distributes, and gets rid of 64Cu-Tz-SarAr.

RECRUITING
Integrated Cancer Repository for Cancer Research
Description

The iCaRe2 is a multi-institutional resource created and maintained by the Fred \& Pamela Buffett Cancer Center to collect and manage standardized, multi-dimensional, longitudinal data and biospecimens on consented adult cancer patients, high-risk individuals, and normal controls. The distinct characteristic of the iCaRe2 is its geographical coverage, with a significant percentage of small and rural hospitals and cancer centers. The iCaRe2 advances comprehensive studies of risk factors of cancer development and progression and enables the design of novel strategies for prevention, screening, early detection and personalized treatment of cancer. Centers with expertise in cancer epidemiology, genetics, biology, early detection, and patient care can collaborate by using the iCaRe2 as a platform for cohort and population studies.

TERMINATED
Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer
Description

This phase I clinical trial is studying the side effects and best dose of veliparib and gemcitabine hydrochloride when given with cisplatin in treating patients with advanced biliary, pancreatic, urothelial, or non-small cell lung cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Veliparib may help cisplatin and gemcitabine hydrochloride work better by making tumor cells more sensitive to the drugs.

COMPLETED
Erlotinib and Cetuximab With or Without Bevacizumab in Treating Patients With Metastatic or Unresectable Kidney, Colorectal, Head and Neck, Pancreatic, or Non-Small Cell Lung Cancer
Description

This randomized phase I/II trial studies the side effects, best way to give, and best dose of erlotinib and bevacizumab when given with cetuximab and how well giving erlotinib and cetuximab together with or without bevacizumab works in treating patients with metastatic or unresectable kidney, colorectal, head and neck, pancreatic, or non-small cell lung cancer. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab and bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab and bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving erlotinib together with cetuximab and/or bevacizumab may kill more tumor cells.

Conditions
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell CarcinomaRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Basal Cell Carcinoma of the LipRecurrent Colon CancerRecurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityRecurrent Inverted Papilloma of the Paranasal Sinus and Nasal CavityRecurrent Lymphoepithelioma of the NasopharynxRecurrent Lymphoepithelioma of the OropharynxRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Pancreatic CancerRecurrent Rectal CancerRecurrent Salivary Gland CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Verrucous Carcinoma of the LarynxRecurrent Verrucous Carcinoma of the Oral CavityStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Basal Cell Carcinoma of the LipStage III Colon CancerStage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage III Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage III Lymphoepithelioma of the NasopharynxStage III Lymphoepithelioma of the OropharynxStage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Pancreatic CancerStage III Rectal CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the HypopharynxStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage III Verrucous Carcinoma of the LarynxStage III Verrucous Carcinoma of the Oral CavityStage IIIB Non-small Cell Lung CancerStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Basal Cell Carcinoma of the LipStage IV Colon CancerStage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IV Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IV Lymphoepithelioma of the NasopharynxStage IV Lymphoepithelioma of the OropharynxStage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Pancreatic CancerStage IV Rectal CancerStage IV Renal Cell CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the HypopharynxStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IV Verrucous Carcinoma of the LarynxStage IV Verrucous Carcinoma of the Oral CavityUntreated Metastatic Squamous Neck Cancer With Occult Primary
ACTIVE_NOT_RECRUITING
Testing the Addition of an Anti-cancer Drug, Elimusertib (BAY 1895344) ATR Inhibitor, to the Chemotherapy Treatment (Gemcitabine) for Advanced Pancreatic and Ovarian Cancer, and Advanced Solid Tumors
Description

This phase I trial identifies the best dose, possible benefits and/or side effects of gemcitabine in combination with elimusertib (BAY 1895344) in treating patients with pancreatic, ovarian, and other solid tumors that have spread to other places in the body (advanced). Gemcitabine is a chemotherapy drug that blocks the cell from making DNA and may kill tumor cells. elimusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine and elimusertib in combination may shrink or stabilize cancer.

UNKNOWN
Volumetric Laser Endomicroscopy's (VLE) Diagnostic Accuracy Validation Study: Impact on Clinical Management Study
Description

The purpose of this study is to assess the interobserver agreement (IOV) for pancreatico-biliary Volumetric Laser Endomicroscopy (VLE) de-identified clips using the new VLE criteria. This is an Interobserver study to validate VLE criteria for indeterminate biliary and pancreatic duct strictures and evaluate impact on clinical management.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma
COMPLETED
Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells

COMPLETED
Vaccine Therapy in Treating Patients With Advanced or Metastatic Cancer
Description

RATIONALE: Vaccines made from a person's white blood cells that have been treated in the laboratory may make the body build an immune response to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of vaccine therapy in treating patients who have advanced or metastatic cancer.

COMPLETED
Immunotoxin Therapy in Treating Patients With Advanced Cancer
Description

RATIONALE: Immunotoxins can locate tumor cells and kill them without harming normal cells. Immunotoxin therapy may be an effective treatment for advanced cancer. PURPOSE: Phase I trial to study the effectiveness of immunotoxins in treating patients who have advanced cancer.

COMPLETED
Biological Therapy in Treating Patients With Metastatic Cancer
Description

RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase I trial to study the effectiveness of biological therapy in treating patients who have metastatic cancer that has not responded to previous treatment.

COMPLETED
18F-FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy
Description

The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.

Conditions
Adult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaMale Breast CancerMetastatic Squamous Neck Cancer With Occult Primary Squamous Cell CarcinomaRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adult Brain TumorRecurrent Basal Cell Carcinoma of the LipRecurrent Colon CancerRecurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityRecurrent Hypopharyngeal CancerRecurrent Inverted Papilloma of the Paranasal Sinus and Nasal CavityRecurrent Laryngeal CancerRecurrent Lip and Oral Cavity CancerRecurrent Lymphoepithelioma of the NasopharynxRecurrent Lymphoepithelioma of the OropharynxRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Nasopharyngeal CancerRecurrent Non-small Cell Lung CancerRecurrent Oropharyngeal CancerRecurrent Pancreatic CancerRecurrent Paranasal Sinus and Nasal Cavity CancerRecurrent Rectal CancerRecurrent Renal Cell CancerRecurrent Salivary Gland CancerStage IIIA Breast CancerStage IIIA Non-small Cell Lung CancerStage IIIB Breast CancerStage IIIB Non-small Cell Lung CancerStage IIIC Breast CancerStage IV Breast CancerStage IV Non-small Cell Lung CancerStage IV Pancreatic CancerStage IV Renal Cell CancerStage IVA Colon CancerStage IVA Rectal CancerStage IVA Salivary Gland CancerStage IVB Colon CancerStage IVB Salivary Gland CancerStage IVC Salivary Gland CancerTongue CancerUnspecified Adult Solid Tumor, Protocol Specific
COMPLETED
Negative Pressure Therapy in Preventing Infection After Surgery in Patients With Colon, Rectal, Pancreatic, or Peritoneal Surface Cancer
Description

The purpose of this research study is to evaluate if a negative-pressure dressing placed over a surgical incision can reduce the risk of developing a surgical site infection compared to a commonly-used sterile gauze incision dressing. In this study, the negative-pressure dressing will be compared to a standard post-surgical sterile gauze dressing. In this study patients will either receive a negative-pressure dressing or a standard sterile gauze dressing

COMPLETED
Comprehensive Electronic Cancer Support System for the Treatment of Cancer Related Symptoms
Description

The purpose of this study is to test the efficacy of a collaborative care intervention to manage cancer-related symptoms and improve health related quality of life in patients diagnosed with hepatobiliary carcinoma.