Treatment Trials

9 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Vemurafenib and Cobimetinib in Treating Patients With BRAF V600E Mutation Positive Craniopharyngioma
Description

This phase II trial studies how well vemurafenib and cobimetinib work in treating patients with BRAF V600E mutation positive craniopharyngioma. Vemurafenib and cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
COMPLETED
RO4929097, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Malignant Glioma
Description

This phase I trial studies the side effects and best dose of gamma-secretase/Notch signalling pathway inhibitor RO4929097 (RO4929097) when given together with temozolomide and radiation therapy in treating patients with newly diagnosed malignant glioma. Enzyme inhibitors, such as gamma-secretase/Notch signalling pathway inhibitor RO4929097, may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gamma-secretase/Notch signalling pathway inhibitor RO4929097 together with temozolomide and radiation therapy may kill more tumor cells.

COMPLETED
Bortezomib and Temozolomide in Treating Patients With Brain Tumors or Other Solid Tumors That Have Not Responded to Treatment
Description

RATIONALE: Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with temozolomide may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with temozolomide in treating patients with brain tumors or other solid tumors that have not responded to treatment.

COMPLETED
Changes in Semen or Sperm Caused by Temozolomide in Patients With Newly Diagnosed, Progressive, or Recurrent Primary Malignant Brain Tumors
Description

RATIONALE: Learning whether temozolomide changes semen or sperm in patients with brain tumors may help doctors learn about the long-term effects of treatment and plan the best treatment. PURPOSE: This clinical trial is studying changes in semen or sperm caused by temozolomide in patients with newly diagnosed, progressive, or recurrent primary malignant brain tumors.

COMPLETED
Donepezil in Treating Patients Who Have Undergone Radiation Therapy for Brain Tumors
Description

RATIONALE: Donepezil may help lessen confusion and fatigue and improve mood and quality of life in patients who have undergone radiation therapy for brain tumors. It is not yet known whether donepezil is more effective than a placebo in lessening side effects of radiation therapy in patients with brain tumors. PURPOSE: This randomized phase III trial is studying donepezil to see how well it works in lessening side effects of radiation therapy compared with a placebo in patients who have undergone radiation therapy for brain tumors.

COMPLETED
Acute Side Effects in Patients Who Are Undergoing Stereotactic Radiosurgery for Brain Tumors or Other Brain Disorders
Description

RATIONALE: Learning about the side effects of stereotactic radiosurgery in patients with brain tumors or other brain disorders may help doctors plan treatment and help patients live more comfortably. PURPOSE: This clinical trial is studying the acute side effects in patients who are undergoing stereotactic radiosurgery for brain tumors or other brain disorders.

COMPLETED
MS-275 in Treating Patients With Advanced Solid Tumors or Lymphoma
Description

RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.

Conditions
UNKNOWN
Photodynamic Therapy With Porfimer Sodium in Treating Patients With Refractory Brain Tumors
Description

RATIONALE: Photodynamic therapy uses light and photosensitizing drugs to kill tumor cells and may be an effective treatment for refractory brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of photodynamic therapy using porfimer sodium in treating patients with refractory brain tumors, including astrocytoma, ependymoma, and medulloblastoma.