21 Clinical Trials for Various Conditions
This multiple-center, 3-part, single-blind dose escalation (Part A), randomized, double-blind (Part B), and open-label multiple dose extension (Part C) study will be conducted in male and female subjects with neurogenic orthostatic hypotension to evaluate the effect of TD-9855 in improving symptoms of orthostatic intolerance.
Levodopa is a precursor of dopamine and is the treatment of choice to treat the motor symptoms of Parkinson's disease (PD); however, the effect of levodopa on cardiovascular autonomic function in PD is poorly understood. Orthostatic hypotension has been documented as a potential side effect of levodopa. As a result, clinicians may be reluctant to prescribe levodopa in patients with PD with neurogenic orthostatic hypotension (PD+OH), which leads to suboptimal management of motor symptoms. On the other hand, other studies failed to show any clear relationship between levodopa and orthostatic hypotension in patients with PD. Important limitations of prior studies include the lack of detailed investigation of baroreflex cardiovagal and sympathetic noradrenergic functions and the fact that the same patients were not tested on and off levodopa. The investigators propose to investigate the effects of levodopa on cardiovascular autonomic function in patients with PD+OH and PD without neurogenic orthostatic hypotension (PD-OH) by performing standardized autonomic testing in the same patients on and off levodopa.
Orthostatic hypotension (OH), which consists in a significant reduction in blood pressure levels upon standing from a seated position, may affect approximately one in three patients with Parkinson's disease (PD). It usually presents as dizziness, lightheadedness, feeling faint, or feeling like you might black out while standing. This can significantly impact the quality of life (QoL) of PD patients, resulting in difficulties with balance, walking, and increased risk of falls. The main aim of this study is to evaluate whether the use of technological devices (a computerized system for analyzing abnormalities in walking in clinical settings and a wearable sensor to detect changes in postural unsteadiness in the home environment) may improve the detection of complications and the response to medical therapies for OH in patients with PD.
The goal of this clinical trial is to learn about the role of noradrenergic system in the non-motor symptoms of Parkinson's disease. The main objectives it aims to answer are: 1. To explore the association between orthostatic hypertension which is low blood pressure that occurs after going from lying to standing, and several neuropsychiatric and neurocognitive nonmotor features of Parkinson's disease (PD), such as feeling tired or disinterested and depression. 2. To explore the association between central noradrenergic dysfunction, orthostatic hypertension, and nonmotor symptoms of PD by measuring hormonal response to head up tilt-table testing before and after administration of yohimbine. 3. To explore the association between central noradrenergic dysfunction, orthostatic hypertension, and nonmotor symptoms of PD by measuring participants pupils before and after administration of yohimbine Participants will be asked to come onsite for two study visits. Visit one will consist of: * Discussing and signing the Informed Consent Form * Discussing Medical History and Current Medications * Collecting Blood samples * Measuring heart rate and blood pressure * Mental health screening and neurocognitive questionnaires * Pupil test * Test to feel vibrations Visit two will consist of : * Mental Health questionnaire * IV Placement * Blood Draws * Administration of Yohimbine hydrochloride * Head up tilt table * Measuring heart rate and blood pressure * Answering questions about anxiety, mood, and fatigue using a scale * Pupil tests Visit three will be a follow-up call from the Nurse Coordinator to discuss any adverse events.
This will be a Phase II single center, double-blind, randomized, placebo-controlled, efficacy study. Subjects will complete six visits. The first will be a screening visit. There will be four assessment visits: baseline, 2 weeks after the double-blinded trial begins, the end of the blinded trial, and after 4 weeks of washout. There will also be an additional randomization and medication dispensing visit immediately following the dose optimization period and preceding the double-blinded trial.
This is a double blind placebo controlled trial in Parkinson's disease (PD) patients with neurogenic orthostatic hypotension (NOH). Investigators hypothesize that the study drug (droxidopa) may improve cerebral perfusion more robustly than systemic BP, possibly by direct action within the CNS vasculature. This study is designed to determine if droxidopa improves cerebral perfusion measures in PD patients with NOH, in addition to peripheral BP measures and subjective responses.
To evaluate the time to treatment intervention in patients with Parkinson's Disease (PD), Multiple System Atrophy (MSA), Pure Autonomic Failure (PAF), Non-Diabetic Autonomic Neuropathy (NDAN) or Dopamine Beta Hydroxylase (DBH) Deficiency who have been previously stabilized with droxidopa therapy for symptoms of neurogenic orthostatic hypotension (NOH) (dizziness, light-headedness, or feelings that they are about to black out)
The objective of this experiment is: * Primary: To determine the effects of tyrosine supplementation on orthostatic hypotension in people with PD. * Secondary: To determine the effects of tyrosine supplementation in people with PD with autonomic insufficiency on HR, BP, and norepinephrine responses during acute exercise stress. Orthostatic hypotension and autonomic abnormalities are a common problem for individuals who suffer from PD, especially as it leads to lightheadedness and falling. For those affected, it can drastically reduce quality of life. It has been hypothesized that tyrosine may impact upon individuals suffering from PD. There is ample evidence in animal models that supports our theory; however there is no clinical evidence of the impact tyrosine supplementation may have in PD patients who suffer from orthostatic hypotension and blunted BP and HR responses. Positive findings that supplemental tyrosine increases BP and HR in people with PD during daily activities such as standing up from a chair and walking can lead to new therapies to improve Parkinsonian orthostatic hypotension. Hypothesis We will test the hypothesis that symptomatic individuals with PD on dopamine therapy who suffer from orthostatic hypotension and blunted HR and BP responses will improve after tyrosine supplementation.
The autonomic or automatic nervous system helps control blood pressure. Diseases of the autonomic nervous system may result in a drop in blood pressure on standing in many cases leading to fainting. Diseases that affect the autonomic nervous system include pure autonomic failure, multiple system atrophy and Parkinson's disease, and can present with very similar symptoms and it is sometimes difficult to determine an exact diagnosis. The purpose of the study is to find out if the blood pressure response from taking a single dose of the medication atomoxetine can help in the diagnosis of these diseases.
This is a study to evaluate the effects of an investigational drug, Droxidopa, in participants with neurogenic orthostatic hypotension (NOH), associated with Parkinson's disease. Droxidopa is being studied to determine the effects on blood pressure changes upon standing up (orthostatic challenge). Symptoms and activity measurements, including patient reported falls, will be evaluated to determine the effectiveness of the study drug. Symptoms of NOH may include any of the following: * Dizziness, light-headedness, feeling faint or feeling like you may blackout * Problems with vision (blurring, seeing spots, tunnel vision, etc.) * Weakness * Fatigue * Trouble concentrating * Head \& neck discomfort (the coat hanger syndrome) * Difficulty standing for a short time or a long time * Trouble walking for a short time or a long time The study duration is a maximum of approximately 14 weeks including up to 2 weeks for screening, up to 2 weeks for proper dose finding, followed by an 8 week treatment period and a follow-up visit after 2 weeks. A sufficient number of patients will be screened to allow approximately 211 randomized patients. An extension study is also available to continue treatment if determined appropriate by the study doctor. This Study is NCT01132326 sponsored by Chelsea Therapeutics and is enrolling by invitation only.
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Besides causing symptoms that impair movement, PD also causes non-motor symptoms, such as problems thinking and orthostatic hypotension (OH), i.e., low blood pressure (BP) when standing. About one-third of people with PD have OH, which can cause sudden, temporary symptoms while upright, including lightheadedness, dizziness, and fainting. People with PD and OH can also experience problems thinking that happen only while upright and not while sitting - this can occur without other symptoms, such as feeling dizzy or faint. However, the level of low BP that can affect thinking remains unknown, and no guidelines exist for treating OH when it happens without symptoms. This is significant because OH could be a treatable risk factor for thinking problems in PD, but OH is often not treated if people do not report obvious symptoms. This project's goal is to determine how BP affects brain function in PD. The proposed experiments will measure BP and brain blood flow continuously in real-time using innovative wearable technology. Persons with PD with OH and without OH will undergo repeated cognitive tests while supine (lying down) and while upright. I will study the associations between BP, thinking abilities, and brain blood flow, and will compare groups with and without OH. These findings could be important because if a certain level of BP correlates with thinking abilities, then treating OH in PD may prevent thinking problems, which would improve health-related quality of life and reduce disability and healthcare costs.
The purpose of this study is to learn more about the effects of abdominal compression and the medication midodrine, two interventions used for the treatment of orthostatic hypotension (low blood pressure on standing), on hemodynamic markers of cardiovascular risk. The study will be conducted at the Vanderbilt University Medical Center and consists of a screening and 2 testing days, one with abdominal compression and one with midodrine. The total length of the study will be about 5 days.
A Phase 3, multi-center, open-label study to evaluate the safety and tolerability of ampreloxetine in subjects with primary autonomic failures (MSA, PD, and PAF) and symptomatic nOH over 182 weeks.
A Phase 3, 22-week, Multi-center, Randomized Withdrawal Study of ampreloxetine in Treating Symptomatic Neurogenic Orthostatic Hypotension in Subjects with Primary Autonomic Failure
A Phase 3 study to evaluate efficacy, safety, and tolerability of ampreloxetine (TD-9855) in subjects with primary autonomic failures (MSA, PD, or PAF) and symptomatic nOH with up to 4 weeks of treatment.
Evaluate the clinical efficacy and safety of droxidopa versus placebo over a 17 week (maximum) treatment period in patients with symptomatic NOH.
This study aims to learn about the effects of continuous positive airway pressure (CPAP) on people with autonomic failure and high blood pressure when lying down (supine hypertension) to determine if it can be used to treat their high blood pressure during the night. CPAP (a widely used treatment for sleep apnea) involves using a machine that blows air into a tube connected to a mask covering the nose, or nose and mouth, to apply a low air pressure in the airways. The study includes 3-5 days spent in the Vanderbilt Clinical Research Center (CRC): at least one day of screening tests, followed by up to 3 study days. Subjects may be able to participate in daytime and/or overnight studies. The Daytime study consists of 2 study days: one with active CPAP and one with sham CPAP applied for up to 2 hours. The Overnight study consists of 3 study nights: one with active CPAP, one with sham CPAP, both applied for up to 9 hours and one night sleeping with the bed tilted head-up.
This Stage II randomized, controlled, longitudinal trial seeks to assess the acceptability, feasibility, and effects of a driving decision aid use among geriatric patients and providers. This multi-site trial will (1) test the driving decision aid (DDA) in improving decision making and quality (knowledge, decision conflict, values concordance and behavior intent); and (2) determine its effects on specific subpopulations of older drivers (stratified for cognitive function, decisional capacity, and attitudinally readiness for a mobility transition). The overarching hypotheses are that the DDA will help older adults make high-quality decisions, which will mitigate the negative psychosocial impacts of driving reduction, and that optimal DDA use will target certain populations and settings.
The purpose of this study is to learn more about the effects of midodrine and droxidopa, two medications used for the treatment of orthostatic hypotension (low blood pressure on standing), on the veins of the abdomen of patients with autonomic failure. The study will be conducted at Vanderbilt University Medical Center, and consists of 2 parts: a screening and 2 testing days. The total length of the study will be about 5 days. About 34 participants will be screened for the study.
Synucleinopathies are a group of rare diseases associated with worsening neurological deficits and the abnormal accumulation of the protein α-synuclein in the nervous system. Onset is usually in late adulthood at age 50 or older. Usually, synucleinopathies present clinically with slowness of movement, coordination difficulties or mild cognitive impairment. Development of these features indicates that abnormal alpha-synuclein deposits have destroyed key areas of the brain involved in the control of movement or cognition. Patients with synucleinopathies and signs of CNS-deficits are frequently diagnosed with Parkinson disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA). However, accumulation of alpha-synuclein and death of nerve cells can also begin outside the brain in the autonomic nerves. In such cases, syncucleinopathies present first with symptoms of autonomic impairment (unexplained constipation, urinary difficulties, and sexual dysfunction). In rare cases, hypotension on standing (a disorder known as orthostatic hypotension) may be the only clinical finding. This "pre-motor" autonomic stage suggests that the disease process may not yet have spread to the brain. After a variable period of time, but usually within 5-years, most patients with abnormally low blood pressure on standing develop cognitive or motor abnormalities. This stepwise evolution indicates that the disease spreads from the body to the brain. Another indication of this spread is that acting out dreams (i.e., REM sleep behavior disorder, RBD) a problem that occurs when the lower part of the brain is affected, may also be the first noticeable sign of Parkinson disease. The purpose of this study is to document the clinical features and biological markers of patients with synucleinopathies and better understand how these disorders evolve over time. The study will involve following patients diagnosed with a synucleinopathy (PD/DLB and MSA) and those believed to be in the "pre-motor" stage (with isolated autonomic impairment and/or RBD). Through a careful series of follow-up visits to participating Centers, we will focus on finding biological clues that predict which patients will develop motor/cognitive problems and which ones have the resilience to keep the disease at bay preventing spread to the brain. We will also define the natural history of MSA - the most aggressive of the synucleinopathies.
This study will comprise of two phases, an observational phase and a treatment phase. In the observational phase the specific aims are: 1. To determine the presence and regional distribution of microglial activation, as assessed by 18F-PBR06 PET, in subjects with MSA as compared to healthy controls, at baseline and at 6-9 months' follow-up. 2. To assess the relationship between microglial activation and clinical progression at baseline and follow-up. In the treatment phase the specific aims of the study are: The specific aims of the study are: 1. To assess whether verdiperstat (BHV-3241) reduces 18F-PBR06 PET signal, and thus microglial activation and inflammation, in well-characterized MSA patients. 2. To assess the relationship between PET changes and clinical progression at baseline and follow-up in patients treated with verdiperstat. 3. To assess the relationship between PET changes and volumetric brain MRI at baseline and follow-up in patients treated with verdiperstat. Currently there is no known disease modifying therapy for MSA. Recently, the drug verdiperstat (BHV-3241) has appeared in the investigational arena specifically for the indication of Multiple System Atrophy. Verdiperstat (BHV-3241) is currently being used in a phase 3 active drug trial at Massachusetts Hospital. Verdiperstat (BHV-3241) is known to target Myeloperoxidase, an enzyme implicated in neuroinflammation, a major driver in disease pathogenesis. Our previous study (IRB protocol #2016P002373) demonstrated that applying TSPO (translator protein) PET imaging enabled us to track changes in neuroinflammation and thus provide a viable biomarker for disease progression. In this pilot study, the investigators aim to assess the effect of an investigational drug, verdiperstat (BHV-3241) on microglial activation in MSA patients using \[F-18\]PBR06 and to link it with clinical and morphometric MRI brain changes following treatment.