18 Clinical Trials for Various Conditions
This clinical trial tests whether atorvastatin prevents metastasis of resected high-risk stage IIA, IIB or IIIA melanoma. The vast majority of melanomas are diagnosed at an early, localized stage. However, approximately 10-15% of these localized melanomas will eventually metastasize, despite appropriate local treatment. Once metastasis occurs, median survival is less than two years. Melanomas at high risk of metastasis can be identified by gene expression profiling. Statin drugs, like atorvastatin, have been used to treat high cholesterol for the prevention of major adverse cardiovascular events, but not for preventing melanoma metastasis. Statins could prevent melanoma metastasis through decreasing tumor cell migration, decreasing tumor cell adhesion, and increasing immune system response. Statins are also efficient inhibitors of new lymphatic vessels formation. Since tumor lymphatic vessels serve as highways to lymph nodes and may suppress immune system responses, statins may block a critical step towards melanoma metastasis. Using atorvastatin may have the potential to prevent metastasis and improve outcomes in patients with resected high-risk melanoma.
This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.
To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.
This study evaluates the immune related toxicity and symptom burden in chronic cancer survivors with melanoma who are receiving adjuvant immunotherapy with immune checkpoint inhibitors. Information collected in this study may help doctors to learn more about the side effects caused by immunotherapy, and to learn if there are any relationships between these side effects and immune and genetic biomarkers found in the blood that may be related to patient's reaction to immunotherapy.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This study investigates the bone-related side effects caused by immunotherapy drugs such as nivolumab and pembrolizumab in patients with melanoma. Nivolumab and pembrolizumab are immunotherapy drugs (drugs that boost your immune system) used to prevent cancer from coming back in patients with melanoma. Specifically, researchers want to learn if there is any relationship between receiving immunotherapy and bone density (thickness) measured by a dual-energy X-ray absorptiometry (DXA) scan or bone turnover markers (which indicate levels of bone loss) found in the blood. This study may provide researchers with more information on bone loss and may help prevent bone loss in future patients.
This phase II trial studies how well binimetinib and nivolumab work in treating patients with BRAF V600 wildtype melanoma that has spread to nearby tissues or lymph nodes and cannot be removed by surgery (locally advanced unresectable) or has spread to other places in the body (metastatic). Binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving binimetinib and nivolumab together may work better in treating patients with melanoma compared to nivolumab alone.
This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.
This phase I trial studies the side effects and best dose of a modified virus called VSV-IFNbetaTYRP1 in treating patients with stage III-IV melanoma. The vesicular stomatitis virus (VSV) has been altered to include two extra genes: human interferon beta (hIFNbeta), which may protect normal healthy cells from becoming infected with the virus, and TYRP1, which is expressed mainly in melanocytes (specialized skin cell that produces the protective skin-darkening pigment melanin) and melanoma tumor cells, and may trigger a strong immune response to kill the melanoma tumor cells.
This trial studies the role of the gut microbiome and effectiveness of a fecal transplant on medication-induced gastrointestinal (GI) complications in patients with melanoma or genitourinary cancer. The gut microbiome (the bacteria and microorganisms that live in the digestive system) may affect whether or not someone develops colitis (inflammation of the intestines) during cancer treatment with immune-checkpoint inhibitor drugs. Studying samples of stool, blood, and tissue from patients with melanoma or genitourinary cancer may help doctors learn more about the effects of treatment on cells, and help doctors understand how well patients respond to treatment. Treatment with fecal transplantation may help to improve diarrhea and colitis symptoms.
This phase I trial studies how well tacrolimus, nivolumab, and ipilimumab work in treating kidney transplant recipients with cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Tacrolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tacrolimus, nivolumab, and ipilimumab may work better in treating kidney transplant recipients with cancer compared to chemotherapy, surgery, radiation therapy, or targeted therapies.
This trial studies how well Young Melanoma Family Facebook intervention or Healthy Lifestyle Facebook intervention works in improving skin examination in participants with melanoma and their families. Young Melanoma Family Facebook intervention or Healthy Lifestyle Facebook intervention may help improve total cutaneous examinations, skin self-examinations, and sun protection among first degree relatives of young onset participants and the participants themselves.
This trial studies how well vemurafenib, cobimetinib, and atezolizumab work in treating patients with high-risk stage III melanoma. Vemurafenib and cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as atezolizumab and tiragolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving vemurafenib, cobimetinib, and atezolizumab may work better in treating high-risk stage III melanoma. Giving atezolizumab and tiragolumab together may also work better in treating high-risk stage III melanoma.
This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.
This phase Ib trial studies the side effects and best dose of selinexor when given together with several different standard chemotherapy or immunotherapy regimens in treating patients with malignancies that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Selinexor may stop the growth of cancer cells by blocking enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Studying selinexor with different standard chemotherapy or immunotherapy regimens may help doctors learn the side effects and best dose of selinexor that can be given with different types of treatments in one study.
This phase I trial studies best dose and side effects of CBL0137 in treating patients with extremity melanoma or sarcoma that has spread to other places in the body. Drugs, such as CBL0137, may work by binding to tumor cell deoxyribonucleic acid (DNA) to stop the cell from growing further.
This trial studies the genetic analysis of blood and tissue samples from patients with cancer that has spread to other anatomic sites (advanced) or is no longer responding to treatment. Studying these samples in the laboratory may help doctors to learn how genes affect cancer and how they affect a person's response to treatment.