Treatment Trials

35 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Natural Killer Cell Therapy (UD TGFbetai NK Cells) and Temozolomide for the Treatment of Stage IV Melanoma Metastatic to the Brain
Description

This phase I/II trial tests the safety, side effects, and best dose of universal donor UD TGFbetai natural killer (NK) cells, and whether UD TGFbetai NK cells with temozolomide works to shrink tumors in patients with stage IV melanoma that has spread to the brain (metastatic to the brain). NK cells are immune cells that contribute to anti-tumor immunity by recognizing and destroying transformed or stressed cells. Temozolomide is in a class of medications called alkylating agents. It works by slowing or stopping the growth of cancer cells in the body. Giving UD TGFbetai NK cell and temozolomide may work better in treating patients with stage IV melanoma.

RECRUITING
Stereotactic Radiosurgery and Immune Checkpoint Inhibitors With NovoTTF-100M for the Treatment of Melanoma Brain Metastases
Description

This phase I trial finds out the side effects and possible benefits of stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M for the treating of melanoma that has spread to the brain (brain metastases). Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. It is used to treat brain tumors and other brain disorders that cannot be treated by regular surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. NovoTTF-100M is a portable battery operated device which produces tumor treating fields in the body by means of surface electrodes placed on the skin. Tumor treating fields are low intensity, intermediate frequency electric fields that pulse through the skin to disrupt cancer cells' ability to divide. Giving stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M may work better than stereotactic radiosurgery and immune checkpoint inhibitors.

RECRUITING
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for Treatment of Advanced Solid Tumors
Description

This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Merkel Cell Carcinoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Merkel Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Locally Advanced Cervical CarcinomaLocally Advanced Endometrial CarcinomaLocally Advanced Gastric AdenocarcinomaLocally Advanced Gastroesophageal Junction AdenocarcinomaLocally Advanced Head and Neck Squamous Cell CarcinomaLocally Advanced Hepatocellular CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Malignant Solid NeoplasmLocally Advanced MelanomaLocally Advanced Merkel Cell CarcinomaLocally Advanced Renal Cell CarcinomaLocally Advanced Skin Squamous Cell CarcinomaLocally Advanced Triple-Negative Breast CarcinomaLocally Advanced Unresectable Breast CarcinomaLocally Advanced Unresectable Cervical CarcinomaLocally Advanced Unresectable Gastric AdenocarcinomaLocally Advanced Unresectable Gastroesophageal Junction AdenocarcinomaLocally Advanced Unresectable Renal Cell CarcinomaLocally Advanced Urothelial CarcinomaMetastatic Cervical CarcinomaMetastatic Endometrial CarcinomaMetastatic Gastric AdenocarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Head and Neck Squamous Cell CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Merkel Cell CarcinomaMetastatic Renal Cell CarcinomaMetastatic Skin Squamous Cell CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Merkel Cell Carcinoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Merkel Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Skin Squamous Cell CarcinomaStage III Cervical Cancer AJCC v8Stage III Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Triple-Negative Breast CarcinomaUnresectable Cervical CarcinomaUnresectable Endometrial CarcinomaUnresectable Gastric AdenocarcinomaUnresectable Gastroesophageal Junction AdenocarcinomaUnresectable Head and Neck Squamous Cell CarcinomaUnresectable Hepatocellular CarcinomaUnresectable Lung Non-Small Cell CarcinomaUnresectable Malignant Solid NeoplasmUnresectable MelanomaUnresectable Merkel Cell CarcinomaUnresectable Renal Cell CarcinomaUnresectable Skin Squamous Cell CarcinomaUnresectable Triple-Negative Breast CarcinomaUnresectable Urothelial Carcinoma
COMPLETED
The Effect of the Microbiome on Immune Checkpoint Inhibitor Response in Melanoma Patients
Description

This pilot trial studies the effect of the microbiome on immune checkpoint inhibitors response in patients with melanoma by collecting stool and blood samples. Gut microbiome plays a critical role in response to immune checkpoint inhibitors. Studying the change in an individual's microbiome due to corticosteroid use may help researchers to determine whether an individual's microbiome can predict their response and toxicity to immune checkpoint inhibitors.

RECRUITING
IACS-6274 With or Without Bevacizumab and Paclitaxel for the Treatment of Advanced Solid Tumors
Description

To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.

RECRUITING
Binimetinib and Encorafenib for the Treatment of Metastatic Melanoma and Central Nervous System Metastases
Description

This phase II trial studies the effects of binimetinib and encorafenib in treating patients with melanoma that has spread to the central nervous system (metastases). Binimetinib and encorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving binimetinib and encorafenib may help control melanoma that has spread to the brain.

RECRUITING
7T MRI Scan for the Early Detection of Melanoma Brain Metastases
Description

This clinical trial studies the use of 7-Tesla (7T) magnetic resonance imaging (MRI) in detecting melanoma that has spread to the brain (melanoma brain metastases). The standard MRI brain imaging is done on 3T or similar MRI machine, but the 7T MRI machine has a larger magnet which has been shown to have superior resolution of the brain and of non-cancerous brain lesions. Diagnostic procedures such as 7T MRI may help find and diagnose melanoma brain metastases earlier than standard 3T MRI.

ACTIVE_NOT_RECRUITING
Tocilizumab, Ipilimumab, and Nivolumab for the Treatment of Advanced Melanoma, Non-Small Cell Lung Cancer, or Urothelial Carcinoma
Description

This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.

Conditions
Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Locally Advanced Bladder CarcinomaLocally Advanced Bladder Urothelial CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Renal Pelvis CarcinomaLocally Advanced Renal Pelvis Urothelial CarcinomaLocally Advanced Ureter Urothelial CarcinomaLocally Advanced Urethral Urothelial CarcinomaMalignant Solid NeoplasmMetastatic Bladder CarcinomaMetastatic Bladder Urothelial CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic MelanomaMetastatic Renal Pelvis Urothelial CarcinomaMetastatic Ureter Urothelial CarcinomaMetastatic Urethral CarcinomaMetastatic Urethral Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Stage III Bladder Cancer AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Pelvis Cancer AJCC v8Stage III Ureter Cancer AJCC v8Stage III Urethral Cancer AJCC v8Stage IIIA Bladder Cancer AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIB Bladder Cancer AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IV Bladder Cancer AJCC v8Stage IV Lung Cancer AJCC v6Stage IV Renal Pelvis Cancer AJCC v8Stage IV Ureter Cancer AJCC v8Stage IV Urethral Cancer AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVB Lung Cancer AJCC v8Unresectable Melanoma
TERMINATED
Plinabulin in Combination With Radiation/Immunotherapy in Patients With Select Advanced Cancers After Progression on PD-1 or PD-L1 Targeted Antibodies
Description

This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.

COMPLETED
Bintrafusp Alfa and Pimasertib for the Treatment of Patients With Brain Metastases
Description

This phase I/II trial studies the best dose and effect of pimasertib in combination with bintrafusp alfa in treating patients with cancer that has spread to the brain (brain metastases). Immunotherapy with bintrafusp alfa, a bifunctional fusion protein composed of the monoclonal antibody anti-PD-L1 and TGF-beta, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pimasertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pimasertib and bintrafusp alfa may help to prevent or delay the cancer from progressing (getting worse) and/or coming back.

COMPLETED
18F-FMAU PET/CT and MRI for the Detection of Brain Tumors in Patients With Brain Cancer or Brain Metastases
Description

This early phase I trial tests the use of a radioactive tracer (a drug that is visible during an imaging test) known as 18F-FMAU, for imaging with positron emission tomography/computed tomography (PET/CT) in patients with brain cancer or cancer that has spread to the brain (brain metastases). A PET/CT scan is an imaging test that uses a small amount of radioactive tracer (given through the vein) to take detailed pictures of areas inside the body where the tracer is taken up. 18F-FMAU may also help find the cancer and how far the disease has spread. Magnetic resonance imaging (MRI) is a type of imaging test used to diagnose brain tumors. 18F-FMAU PET/CT in addition to MRI may make the finding and diagnosing of brain tumor easier.

ACTIVE_NOT_RECRUITING
Effect of Diet on the Immune System in Patients With Stage III-IV Melanoma Receiving Immunotherapy, DIET Study
Description

This phase II trial investigates the possible immune effects of two different diets targeting the gut microbiome in patients with stage III-IV melanoma that has been removed by surgery (resectable), has spread to other places in the body (metastatic), or is unable to be removed by surgery (unresectable), and who are being treated with the immunotherapy drugs pembrolizumab or nivolumab as part of their standard of care. Both diets are whole foods diets that meet the American Cancer Society recommendations for cancer patients, but they will vary in fiber content. The purpose of this trial is to learn about the effects of dietary interventions on the structure and function of the gut microbiome in patients with melanoma being treated with standard of care immunotherapy (pembrolizumab or nivolumab).

TERMINATED
Testing Dabrafenib and Trametinib With or Without Hydroxychloroquine in Stage IIIC or IV BRAF V600E/K Melanoma
Description

This phase II trial investigates how well adding hydroxychloroquine to the standard treatment of dabrafenib and trametinib works to overcome resistance and delay disease progression in treating patients with stage IIIC or IV BRAF V600E/K melanoma. Hydroxychloroquine may cause cell death in tumor cells that rely on a process called "autophagy" for survival. Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving hydroxychloroquine together with dabrafenib and trametinib may work better than dabrafenib and trametinib alone to shrink and stabilize the cancer.

ACTIVE_NOT_RECRUITING
Bone Loss in Melanoma Survivors Receiving Immunotherapy
Description

This study investigates the bone-related side effects caused by immunotherapy drugs such as nivolumab and pembrolizumab in patients with melanoma. Nivolumab and pembrolizumab are immunotherapy drugs (drugs that boost your immune system) used to prevent cancer from coming back in patients with melanoma. Specifically, researchers want to learn if there is any relationship between receiving immunotherapy and bone density (thickness) measured by a dual-energy X-ray absorptiometry (DXA) scan or bone turnover markers (which indicate levels of bone loss) found in the blood. This study may provide researchers with more information on bone loss and may help prevent bone loss in future patients.

RECRUITING
A Study to Compare the Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma With Brain Metastases
Description

This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.

RECRUITING
Using Biomarkers to Help Guide Safe Immunotherapy Discontinuation in Patients With Unresectable Stage IIIB-IV Melanoma, The PET-Stop Trial
Description

This phase II trial investigates how well biomarkers on PET/CT imaging drive early discontinuation of anti-PD-1 therapy in patients with stage IIIB-IV melanoma that cannot be removed by surgery (unresectable). Anti-PD-1 therapy has become a standard therapy option for patients with unresectable melanoma. This trial is being done to determine if doctors can safely shorten the use of standard of care anti-PD1 therapy for melanoma by using biomarkers seen on PET/CT imaging and tumor biopsy.

TERMINATED
Binimetinib and Nivolumab for the Treatment of Locally Advanced Unresectable or Metastatic BRAF V600 Wildtype Melanoma
Description

This phase II trial studies how well binimetinib and nivolumab work in treating patients with BRAF V600 wildtype melanoma that has spread to nearby tissues or lymph nodes and cannot be removed by surgery (locally advanced unresectable) or has spread to other places in the body (metastatic). Binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving binimetinib and nivolumab together may work better in treating patients with melanoma compared to nivolumab alone.

RECRUITING
Gene Modified Immune Cells (IL13Ralpha2 CAR T Cells) After Conditioning Regimen for the Treatment of Stage IIIC or IV Melanoma or Metastatic Solid Tumors
Description

This phase I trial studies the side effects and best dose of modified immune cells (IL13Ralpha2 CAR T cells) after a chemotherapy conditioning regimen for the treatment of patients with stage IIIC or IV melanoma or solid tumors that have spread to other places in the body (metastatic). The study agent is called IL13Ralpha2 CAR T cells. T cells are a special type of white blood cell (immune cells) that have the ability to kill tumor cells. The T cells are obtained from the patient's own blood, grown in a laboratory, and modified by adding the IL13Ralpha2 CAR gene. The IL13Ralpha2 CAR gene is inserted into T cells with a virus called a lentivirus. The lentivirus allows cells to make the IL13Ralpha2 CAR protein. This CAR has been designed to bind to a protein on the surface of tumor cells called IL13Ralpha2. This study is being done to determine the dose at which the gene-modified immune cells are safe, how long the cells stay in the body, and if the cells are able to attack the cancer.

COMPLETED
Pharmacogenomics Testing in the Optimal Use of Supportive Care Medications in Stage III-IV Cancer
Description

This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Biliary Tract CarcinomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Malignant Brain NeoplasmMalignant Genitourinary System NeoplasmMalignant Solid NeoplasmPancreatobiliary CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Stage III Colorectal Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage IIIA Colorectal Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Prostate Cancer AJCC v8Stage IIIB Colorectal Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Prostate Cancer AJCC v8Stage IIIC Colorectal Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Prostate Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Pancreatic CancerStage IVA Prostate Cancer AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Pancreatic CancerStage IVB Prostate Cancer AJCC v8Stage IVC Colorectal Cancer AJCC v8
ACTIVE_NOT_RECRUITING
Low Dose Ipilimumab with Pembrolizumab in Treating Patients with Melanoma That Has Spread to the Brain
Description

This phase II trial studies the side effects and how well low dose ipilimumab works in combination with pembrolizumab in treating patients with melanoma that has spread to the brain. Immunotherapy with monoclonal antibodies, such as ipilimumab and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

ACTIVE_NOT_RECRUITING
Modified Virus VSV-IFNbetaTYRP1 in Treating Patients With Stage III-IV Melanoma
Description

This phase I trial studies the side effects and best dose of a modified virus called VSV-IFNbetaTYRP1 in treating patients with stage III-IV melanoma. The vesicular stomatitis virus (VSV) has been altered to include two extra genes: human interferon beta (hIFNbeta), which may protect normal healthy cells from becoming infected with the virus, and TYRP1, which is expressed mainly in melanocytes (specialized skin cell that produces the protective skin-darkening pigment melanin) and melanoma tumor cells, and may trigger a strong immune response to kill the melanoma tumor cells.

RECRUITING
Role of Gut Microbiome and Fecal Transplant on Medication-Induced GI Complications in Patients With Cancer
Description

This trial studies the role of the gut microbiome and effectiveness of a fecal transplant on medication-induced gastrointestinal (GI) complications in patients with melanoma or genitourinary cancer. The gut microbiome (the bacteria and microorganisms that live in the digestive system) may affect whether or not someone develops colitis (inflammation of the intestines) during cancer treatment with immune-checkpoint inhibitor drugs. Studying samples of stool, blood, and tissue from patients with melanoma or genitourinary cancer may help doctors learn more about the effects of treatment on cells, and help doctors understand how well patients respond to treatment. Treatment with fecal transplantation may help to improve diarrhea and colitis symptoms.

Conditions
Clinical Stage 0 Cutaneous Melanoma AJCC v8Clinical Stage I Cutaneous Melanoma AJCC v8Clinical Stage IA Cutaneous Melanoma AJCC v8Clinical Stage IB Cutaneous Melanoma AJCC v8Clinical Stage II Cutaneous Melanoma AJCC v8Clinical Stage IIA Cutaneous Melanoma AJCC v8Clinical Stage IIB Cutaneous Melanoma AJCC v8Clinical Stage IIC Cutaneous Melanoma AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8ColitisLung Non-Small Cell CarcinomaMalignant Genitourinary System NeoplasmMalignant Solid NeoplasmPathologic Stage 0 Cutaneous Melanoma AJCC v8Pathologic Stage I Cutaneous Melanoma AJCC v8Pathologic Stage IA Cutaneous Melanoma AJCC v8Pathologic Stage IB Cutaneous Melanoma AJCC v8Pathologic Stage II Cutaneous Melanoma AJCC v8Pathologic Stage IIA Cutaneous Melanoma AJCC v8Pathologic Stage IIB Cutaneous Melanoma AJCC v8Pathologic Stage IIC Cutaneous Melanoma AJCC v8Pathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Stage 0 Lung Cancer AJCC v8Stage I Lung Cancer AJCC v8Stage IA1 Lung Cancer AJCC v8Stage IA2 Lung Cancer AJCC v8Stage IA3 Lung Cancer AJCC v8Stage IB Lung Cancer AJCC v8Stage II Lung Cancer AJCC v8Stage IIA Lung Cancer AJCC v8Stage IIB Lung Cancer AJCC v8Stage III Lung Cancer AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IV Lung Cancer AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVB Lung Cancer AJCC v8
ACTIVE_NOT_RECRUITING
Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients With Selected Unresectable or Metastatic Cancers
Description

This phase I trial studies how well tacrolimus, nivolumab, and ipilimumab work in treating kidney transplant recipients with cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Tacrolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tacrolimus, nivolumab, and ipilimumab may work better in treating kidney transplant recipients with cancer compared to chemotherapy, surgery, radiation therapy, or targeted therapies.

ACTIVE_NOT_RECRUITING
Bevacizumab and Atezolizumab With or Without Cobimetinib in Treating Patients With Untreated Melanoma Brain Metastases
Description

This phase II trial studies how well bevacizumab and atezolizumab with or without cobimetinib work in treating patients with untreated melanoma that has spread to the brain (brain metastases). Monoclonal antibodies, such as bevacizumab and atezolizumab, may interfere with the ability of tumor cells to grow and spread. Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known if giving bevacizumab and atezolizumab with or without cobimetinib will work better in treating patients with melanoma brain metastases.

ACTIVE_NOT_RECRUITING
Gene-Modified T Cells With or Without Decitabine in Treating Patients With Advanced Malignancies Expressing NY-ESO-1
Description

This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.

Conditions
Advanced Fallopian Tube CarcinomaAdvanced Malignant Solid NeoplasmAdvanced MelanomaAdvanced Ovarian CarcinomaAdvanced Primary Peritoneal CarcinomaAdvanced Synovial SarcomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Metastatic Fallopian Tube CarcinomaMetastatic MelanomaMetastatic Ovarian CarcinomaMetastatic Primary Peritoneal CarcinomaMetastatic Synovial SarcomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Platinum-Resistant Fallopian Tube CarcinomaPlatinum-Resistant Ovarian CarcinomaPlatinum-Resistant Primary Peritoneal CarcinomaStage III Fallopian Tube Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Primary Peritoneal Cancer AJCC v8Stage IIIA Fallopian Tube Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Primary Peritoneal Cancer AJCC v8Stage IIIA1 Fallopian Tube Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Fallopian Tube Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Fallopian Tube Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Primary Peritoneal Cancer AJCC v8Stage IIIC Fallopian Tube Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Primary Peritoneal Cancer AJCC v8Stage IV Fallopian Tube Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Primary Peritoneal Cancer AJCC v8Stage IVA Fallopian Tube Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Primary Peritoneal Cancer AJCC v8Stage IVB Fallopian Tube Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Primary Peritoneal Cancer AJCC v8Unresectable MelanomaUnresectable Ovarian CarcinomaUnresectable Synovial Sarcoma
TERMINATED
Phase IB Study to Evaluate the Safety of Selinexor (KPT-330) in Combination with Multiple Standard Chemotherapy or Immunotherapy Agents in Patients with Advanced Malignancies
Description

This phase Ib trial studies the side effects and best dose of selinexor when given together with several different standard chemotherapy or immunotherapy regimens in treating patients with malignancies that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Selinexor may stop the growth of cancer cells by blocking enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Studying selinexor with different standard chemotherapy or immunotherapy regimens may help doctors learn the side effects and best dose of selinexor that can be given with different types of treatments in one study.

COMPLETED
Ipilimumab and Imatinib Mesylate in Advanced Cancer
Description

This phase I trial studies the side effects and best dose of ipilimumab and imatinib mesylate in treating patients with solid tumors that have spread to other places in the body or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Imatinib mesylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ipilimumab and imatinib mesylate may work better in treating patients with solid tumors.

ACTIVE_NOT_RECRUITING
Stereotactic Radiosurgery in Treating Patients with Greater Than 3 Melanoma Brain Metastases
Description

This phase II trial studies how well stereotactic radiosurgery works in treating patients with melanoma that has spread to more than 3 places in the brain. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue.

RECRUITING
Lifileucel With Reduced Dose Fludarabine/Cyclophosphamide Lymphodepletion and Interleukin-2 for the Treatment of Patients With Unresectable or Metastatic Melanoma
Description

This phase II trial tests how well lifileucel, with reduce dose fludarabine and cyclophosphamide for lymphodepletion and interleukin-2, work for treating patients with melanoma that cannot be removed by surgery (unresectable) or that has spread from where it first started (primary site) to other places in the body (metastatic).Lifileucel is made up of specialized immune cells called lymphocytes or T cells that are taken from a patient's tumor, grown in a manufacturing facility and infused back into the preconditioned patient to attack the tumor. Giving Lifileucel with a reduced dose of fludarabine and cyclophosphamide for lymphodepletion and interleukin -2 is being studied in patients with unresectable or metastatic melanoma.