35 Clinical Trials for Various Conditions
This phase I/II trial tests the safety, side effects, and best dose of universal donor UD TGFbetai natural killer (NK) cells, and whether UD TGFbetai NK cells with temozolomide works to shrink tumors in patients with stage IV melanoma that has spread to the brain (metastatic to the brain). NK cells are immune cells that contribute to anti-tumor immunity by recognizing and destroying transformed or stressed cells. Temozolomide is in a class of medications called alkylating agents. It works by slowing or stopping the growth of cancer cells in the body. Giving UD TGFbetai NK cell and temozolomide may work better in treating patients with stage IV melanoma.
This phase I trial finds out the side effects and possible benefits of stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M for the treating of melanoma that has spread to the brain (brain metastases). Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. It is used to treat brain tumors and other brain disorders that cannot be treated by regular surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. NovoTTF-100M is a portable battery operated device which produces tumor treating fields in the body by means of surface electrodes placed on the skin. Tumor treating fields are low intensity, intermediate frequency electric fields that pulse through the skin to disrupt cancer cells' ability to divide. Giving stereotactic radiosurgery and immune checkpoint inhibitors with NovoTTF-100M may work better than stereotactic radiosurgery and immune checkpoint inhibitors.
This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.
This pilot trial studies the effect of the microbiome on immune checkpoint inhibitors response in patients with melanoma by collecting stool and blood samples. Gut microbiome plays a critical role in response to immune checkpoint inhibitors. Studying the change in an individual's microbiome due to corticosteroid use may help researchers to determine whether an individual's microbiome can predict their response and toxicity to immune checkpoint inhibitors.
To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.
This phase II trial studies the effects of binimetinib and encorafenib in treating patients with melanoma that has spread to the central nervous system (metastases). Binimetinib and encorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving binimetinib and encorafenib may help control melanoma that has spread to the brain.
This clinical trial studies the use of 7-Tesla (7T) magnetic resonance imaging (MRI) in detecting melanoma that has spread to the brain (melanoma brain metastases). The standard MRI brain imaging is done on 3T or similar MRI machine, but the 7T MRI machine has a larger magnet which has been shown to have superior resolution of the brain and of non-cancerous brain lesions. Diagnostic procedures such as 7T MRI may help find and diagnose melanoma brain metastases earlier than standard 3T MRI.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This phase I/II trial studies the best dose and effect of pimasertib in combination with bintrafusp alfa in treating patients with cancer that has spread to the brain (brain metastases). Immunotherapy with bintrafusp alfa, a bifunctional fusion protein composed of the monoclonal antibody anti-PD-L1 and TGF-beta, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pimasertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pimasertib and bintrafusp alfa may help to prevent or delay the cancer from progressing (getting worse) and/or coming back.
This early phase I trial tests the use of a radioactive tracer (a drug that is visible during an imaging test) known as 18F-FMAU, for imaging with positron emission tomography/computed tomography (PET/CT) in patients with brain cancer or cancer that has spread to the brain (brain metastases). A PET/CT scan is an imaging test that uses a small amount of radioactive tracer (given through the vein) to take detailed pictures of areas inside the body where the tracer is taken up. 18F-FMAU may also help find the cancer and how far the disease has spread. Magnetic resonance imaging (MRI) is a type of imaging test used to diagnose brain tumors. 18F-FMAU PET/CT in addition to MRI may make the finding and diagnosing of brain tumor easier.
This phase II trial investigates the possible immune effects of two different diets targeting the gut microbiome in patients with stage III-IV melanoma that has been removed by surgery (resectable), has spread to other places in the body (metastatic), or is unable to be removed by surgery (unresectable), and who are being treated with the immunotherapy drugs pembrolizumab or nivolumab as part of their standard of care. Both diets are whole foods diets that meet the American Cancer Society recommendations for cancer patients, but they will vary in fiber content. The purpose of this trial is to learn about the effects of dietary interventions on the structure and function of the gut microbiome in patients with melanoma being treated with standard of care immunotherapy (pembrolizumab or nivolumab).
This phase II trial investigates how well adding hydroxychloroquine to the standard treatment of dabrafenib and trametinib works to overcome resistance and delay disease progression in treating patients with stage IIIC or IV BRAF V600E/K melanoma. Hydroxychloroquine may cause cell death in tumor cells that rely on a process called "autophagy" for survival. Dabrafenib and trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving hydroxychloroquine together with dabrafenib and trametinib may work better than dabrafenib and trametinib alone to shrink and stabilize the cancer.
This study investigates the bone-related side effects caused by immunotherapy drugs such as nivolumab and pembrolizumab in patients with melanoma. Nivolumab and pembrolizumab are immunotherapy drugs (drugs that boost your immune system) used to prevent cancer from coming back in patients with melanoma. Specifically, researchers want to learn if there is any relationship between receiving immunotherapy and bone density (thickness) measured by a dual-energy X-ray absorptiometry (DXA) scan or bone turnover markers (which indicate levels of bone loss) found in the blood. This study may provide researchers with more information on bone loss and may help prevent bone loss in future patients.
This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.
This phase II trial investigates how well biomarkers on PET/CT imaging drive early discontinuation of anti-PD-1 therapy in patients with stage IIIB-IV melanoma that cannot be removed by surgery (unresectable). Anti-PD-1 therapy has become a standard therapy option for patients with unresectable melanoma. This trial is being done to determine if doctors can safely shorten the use of standard of care anti-PD1 therapy for melanoma by using biomarkers seen on PET/CT imaging and tumor biopsy.
This phase II trial studies how well binimetinib and nivolumab work in treating patients with BRAF V600 wildtype melanoma that has spread to nearby tissues or lymph nodes and cannot be removed by surgery (locally advanced unresectable) or has spread to other places in the body (metastatic). Binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving binimetinib and nivolumab together may work better in treating patients with melanoma compared to nivolumab alone.
This phase I trial studies the side effects and best dose of modified immune cells (IL13Ralpha2 CAR T cells) after a chemotherapy conditioning regimen for the treatment of patients with stage IIIC or IV melanoma or solid tumors that have spread to other places in the body (metastatic). The study agent is called IL13Ralpha2 CAR T cells. T cells are a special type of white blood cell (immune cells) that have the ability to kill tumor cells. The T cells are obtained from the patient's own blood, grown in a laboratory, and modified by adding the IL13Ralpha2 CAR gene. The IL13Ralpha2 CAR gene is inserted into T cells with a virus called a lentivirus. The lentivirus allows cells to make the IL13Ralpha2 CAR protein. This CAR has been designed to bind to a protein on the surface of tumor cells called IL13Ralpha2. This study is being done to determine the dose at which the gene-modified immune cells are safe, how long the cells stay in the body, and if the cells are able to attack the cancer.
This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.
This phase II trial studies the side effects and how well low dose ipilimumab works in combination with pembrolizumab in treating patients with melanoma that has spread to the brain. Immunotherapy with monoclonal antibodies, such as ipilimumab and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies the side effects and best dose of a modified virus called VSV-IFNbetaTYRP1 in treating patients with stage III-IV melanoma. The vesicular stomatitis virus (VSV) has been altered to include two extra genes: human interferon beta (hIFNbeta), which may protect normal healthy cells from becoming infected with the virus, and TYRP1, which is expressed mainly in melanocytes (specialized skin cell that produces the protective skin-darkening pigment melanin) and melanoma tumor cells, and may trigger a strong immune response to kill the melanoma tumor cells.
This trial studies the role of the gut microbiome and effectiveness of a fecal transplant on medication-induced gastrointestinal (GI) complications in patients with melanoma or genitourinary cancer. The gut microbiome (the bacteria and microorganisms that live in the digestive system) may affect whether or not someone develops colitis (inflammation of the intestines) during cancer treatment with immune-checkpoint inhibitor drugs. Studying samples of stool, blood, and tissue from patients with melanoma or genitourinary cancer may help doctors learn more about the effects of treatment on cells, and help doctors understand how well patients respond to treatment. Treatment with fecal transplantation may help to improve diarrhea and colitis symptoms.
This phase I trial studies how well tacrolimus, nivolumab, and ipilimumab work in treating kidney transplant recipients with cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Tacrolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tacrolimus, nivolumab, and ipilimumab may work better in treating kidney transplant recipients with cancer compared to chemotherapy, surgery, radiation therapy, or targeted therapies.
This phase I trial studies best dose and side effects of CBL0137 in treating patients with extremity melanoma or sarcoma that has spread to other places in the body. Drugs, such as CBL0137, may work by binding to tumor cell deoxyribonucleic acid (DNA) to stop the cell from growing further.
This phase II trial studies how well bevacizumab and atezolizumab with or without cobimetinib work in treating patients with untreated melanoma that has spread to the brain (brain metastases). Monoclonal antibodies, such as bevacizumab and atezolizumab, may interfere with the ability of tumor cells to grow and spread. Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known if giving bevacizumab and atezolizumab with or without cobimetinib will work better in treating patients with melanoma brain metastases.
This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.
This phase Ib trial studies the side effects and best dose of selinexor when given together with several different standard chemotherapy or immunotherapy regimens in treating patients with malignancies that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Selinexor may stop the growth of cancer cells by blocking enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Studying selinexor with different standard chemotherapy or immunotherapy regimens may help doctors learn the side effects and best dose of selinexor that can be given with different types of treatments in one study.
This phase I trial studies the side effects and best dose of ipilimumab and imatinib mesylate in treating patients with solid tumors that have spread to other places in the body or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Imatinib mesylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ipilimumab and imatinib mesylate may work better in treating patients with solid tumors.
This phase II trial studies how well stereotactic radiosurgery works in treating patients with melanoma that has spread to more than 3 places in the brain. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue.
This phase II trial tests how well lifileucel, with reduce dose fludarabine and cyclophosphamide for lymphodepletion and interleukin-2, work for treating patients with melanoma that cannot be removed by surgery (unresectable) or that has spread from where it first started (primary site) to other places in the body (metastatic).Lifileucel is made up of specialized immune cells called lymphocytes or T cells that are taken from a patient's tumor, grown in a manufacturing facility and infused back into the preconditioned patient to attack the tumor. Giving Lifileucel with a reduced dose of fludarabine and cyclophosphamide for lymphodepletion and interleukin -2 is being studied in patients with unresectable or metastatic melanoma.