Treatment Trials

48 Clinical Trials for Various Conditions

Focus your search

TERMINATED
AMD3100 for Sensitizing in Allogeneic Blood or Marrow Transplant for Chemotherapy Resistant Pediatric Acute Leukemia
Description

This study is for patients 2-21 years old who have acute leukemia that has not responded well to chemotherapy and will have a bone marrow transplant. This is a pilot (phase 1) study of AMD3100(also called Plerixafor, Mozobil). AMD3100 is given in combination with a standard pre-transplant conditioning regimen (total body irradiation, etoposide and cyclophosphamide). The conditioning regimen is the treatment that is given just before the transplant. This treatment kills leukemia cells as well as healthy bone marrow and immune cells. Researchers want to learn more about how AMD3100 affects acute leukemia cells. Blood and bone marrow samples from study participants will be collected to find out if AMD3100 is making patients' cells more sensitive to the conditioning regimen and to find out how it does this. The first six patients receive three daily doses (240 mcg/kg via IV). If it appears that three doses do not significantly increase the side effects of transplant conditioning, the investigators will give a second group of six patients five daily doses.

TERMINATED
ABT-751 With Chemotherapy for Relapsed Pediatric ALL
Description

This is a phase I/II study of an investigational drug called ABT-751, produced by Abbott Laboratories, given in combination with chemotherapy drugs used to treat acute lymphoblastic leukemia (ALL) that has come back (recurred). The phase I portion of this study is being done to find the highest dose of ABT-751 that can be given safely in combination with other chemotherapy drugs. A safe dose is one that does not result in unacceptable side effects. After a safe dose for ABT-751 given with chemotherapy has been found, the study will add additional patients to find out if ABT-751 (given at the maximal safe dose) when given with additional chemotherapy is an effective therapy for the treatment of children with relapsed ALL. It is expected that approximately 15-35 children and young adults will take part in this study.

COMPLETED
Low Dose Daunorubicin in Pediatric Relapsed/Refractory Acute Leukemia
Description

In this pilot study, eligible pediatric patients will be treated with 5 consecutive days of low dose daunorubicin. All patients who receive low dose daunorubicin will be evaluated daily for potential toxicity during those 5 days. Once the patient has received 5 doses of daunorubicin, subsequent therapy will be at the discretion of the primary oncology team.

COMPLETED
Bortezomib With Chemotherapy for Relapsed Pediatric Acute Lymphoblastic Leukemia (ALL)
Description

This is a Phase I/II study of a drug called bortezomib given in combination with chemotherapy drugs used to treat acute lymphoblastic leukemia (ALL) that has come back (recurred). Bortezomib is a drug that has been approved by the Food and Drug Administration (FDA) for treating adults with multiple myeloma which is a type of blood cancer. Bortezomib has been shown to cause cancer cells to die in studies done on animals (mice). Studies have been done that have shown that some adults and children with cancer have shown a response to bortezomib when it is used alone. Studies have also been done in adults to evaluate the dose of bortezomib that can be safely given in combination with other chemotherapy drugs.

COMPLETED
Study of Efficacy and Safety of CTL019 in Pediatric ALL Patients
Description

This is a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of CTL019 in pediatric patients with r/r B-cell ALL.

COMPLETED
Study of Efficacy and Safety of CTL019 in Pediatric ALL Patients
Description

This was a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of an experimental therapy called CTL019 T-cells in pediatric patients with B-cell acute lymphoblastic leukemia, who were refractory to standard chemotherapy regimen or relapsed after allogeneic stem cell transplant.

RECRUITING
CD19x22 Chimeric Antigen Receptor T-cell Therapy (CAR T) in Pediatric B-ALL
Description

This study will evaluate the safety and tolerability of administering a novel bispecific CD19/CD22-directed CAR T cell product (CD19x22) for the treatment of relapsed or refractory pediatric B-ALL.

TERMINATED
Study in Pediatrics With Relapsed or Refractory Pediatric Acute Lymphoblastic Leukemia (pALL) or Lymphoblastic Lymphoma
Description

The primary objective of this study is to evaluate the efficacy of moxetumomab pasudotox in pediatric participants with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL) or B-cell lymphoblastic lymphoma.

ACTIVE_NOT_RECRUITING
Study Evaluating Brexucabtagene Autoleucel (KTE-X19) in Pediatric and Adolescent Participants With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia or Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma
Description

The primary objectives of this study are to evaluate the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in pediatric and adolescent participants with relapsed/refractory (r/r) B-precursor acute lymphoblastic leukemia (ALL) or relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (NHL). As of October 2022, no further patients with acute B-cell Acute Lymphoblastic Leukemia (ALL) will be asked to join the study. The study remains open for recruitment for patients that have B-cell Non Hodgkin Lymphoma (NHL).

SUSPENDED
CAR-20/19-T Cells in Patients With Relapsed/Refractory B Cell ALL
Description

This phase 1 study will evaluate the safety and efficacy of a CAR-T cell therapy directed against two B cell antigens (CD19 CD20) and produced under good manufacturing practice (GMP) conditions using the closed system CliniMACS Prodigy device in B ALL.

TERMINATED
Isatuximab in Combination With Chemotherapy in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia or Acute Myeloid Leukemia
Description

Primary Objective: Evaluate the anti-leukemic activity of isatuximab in combination with standard chemotherapies in pediatric participants of ages 28 days to less than 18 years with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL) or Acute Myeloid Leukemia (AML) Secondary Objectives: * Safety and tolerability assessments * Assessment of infusion reactions (IRs) * Pharmacokinetics (PK) of isatuximab * Minimal residual disease * Overall response rate * Overall survival * Event free survival * Duration of response * Relationship between clinical effects and CD38 receptor density and occupancy

TERMINATED
Re-Induction Therapy for Relapsed Pediatric T-Cell Acute Lymphoblastic Leukemia or Lymphoma
Description

This is a phase-II study to evaluate the efficacy of a salvage regimen in children with relapsed T-cell ALL or lymphoma. Peg-asparaginase, mitoxantrone, intrathecal triples (IT) (intrathecal methotrexate/hydrocortisone/cytarabine) (ITMHA) and dexamethasone are commonly used drugs to treat relapsed or refractory acute lymphocytic leukemia or lymphoma (ALL). In this study, the investigators want to know if adding three drugs called panobinostat, bortezomib and liposomal vincristine (VSLI) to this regimen will result in remission (no signs or symptoms of leukemia or lymphoma). * Panobinostat has been approved by the FDA for treating adults with multiple myeloma, but it has not been approved for use in children and has not been given together with the other drugs used in this study. It has not been widely studied in children. * VSLI has been approved by the FDA for adults with relapsed or refractory ALL, but has not yet been approved for treating children with leukemia or lymphoma. * Bortezomib has been approved by the FDA for treating adults with a cancer called multiple myeloma and adults with relapsed mantle cell lymphoma; it has not been approved for treating children. PRIMARY OBJECTIVE: * To estimate the complete remission (CR) rate for patients with T-cell lymphoblastic leukemia and lymphoma in first relapse. SECONDARY OBJECTIVES: * To evaluate minimal residual disease (MRD) levels at end of each block of therapy. * To describe the toxicities of vincristine sulfate liposome injection (VSLI) when used in combination with chemotherapy and bortezomib.

TERMINATED
A Pilot Study of Decitabine and Vorinostat With Chemotherapy for Relapsed ALL
Description

This is a pilot study using decitabine and vorinostat before and during chemotherapy with vincristine, dexamethasone, mitoxantrone, and peg-asparaginase in pediatric patients with acute lymphoblastic leukemia (ALL).

COMPLETED
Therapy for Pediatric Relapsed or Refractory Acute Lymphoblastic Leukemia
Description

The main purpose of this study is to find out how well participants with relapsed or refractory ALL respond to treatment with an etoposide- and teniposide-based induction chemotherapy regimen and what the side effects are. Primary Objectives: * To estimate the response rate for patients with refractory or relapsed ALL. * To estimate the survival rate of patients with refractory or relapsed ALL treated with risk-directed therapy.

NO_LONGER_AVAILABLE
Expanded Access Program of Venetoclax and Navitoclax for Pediatric Patients with Relapsed or Refractory ALL or LL
Description

The overall goal of this expanded access program is to provide Venetoclax and Navitoclax to patients with acute lymphocytic leukemia (ALL) or lymphoblastic lymphoma (LL) who have exhausted standard treatments.

TERMINATED
A Pharmacokinetic Study of Pediatric Micafungin Prophylaxis
Description

The purpose of this research study is to examine the pharmacokinetics (the process by which a drug is absorbed, distributed, metabolized, and eliminated by the body) of micafungin when it is given at 5mg/kg dose to immunocompromised children as anti-fungal prophylaxis. These children are at high risk for developing invasive fungal disease due to their compromised immunity and associated variable degree and duration of neutropenia. Currently, children who receive micafungin are given daily or alternate day dosing. The investigators will give a ONE TIME dose of micafungin and draw PK levels up to 96 hours post-infusion. The investigators goal is to obtain comparable micafungin drug concentrations at the end of 96 hours (4 days) as compared to lower dose at every 24 hour dosing. The investigators dosing proposal is likely to be effective prophylaxis for immunocompromised patients and would broaden its applicability to larger populations.

RECRUITING
Palbociclib in Combination With Chemotherapy in Pediatric Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia (RELPALL2)
Description

With this research study has following goals * To confirm the highest tolerable dose of palbociclib in combination with chemotherapy is safe and well-tolerated. * To learn more about side effects of palbociclib in combination with chemotherapy; * To learn more about the biological effects of palbociclib on the cells in your body

COMPLETED
A Trial of Temsirolimus With Etoposide and Cyclophosphamide in Children With Relapsed Acute Lymphoblastic Leukemia and Non-Hodgkins Lymphoma
Description

This is a phase I study of temsirolimus (Torisel) combined with dexamethasone, cyclophosphamide and etoposide in patients with relapsed acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL) or peripheral T-cell lymphoma (PTL).

COMPLETED
AC220 for Children With Relapsed/Refractory ALL or AML
Description

This is a phase I study of the investigational drug AC220 combined with cytarabine and etoposide in pediatric patients with relapsed acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia (AML).

TERMINATED
EZN-3042 Administered With Re-induction Chemotherapy in Children With Relapsed Acute Lymphoblastic Leukemia (ALL)
Description

An experimental drug called EZN-3042 targets survivin, a protein expressed in leukemia cells at relapse that promotes the leukemia cells to grow. The main goal of this phase I study is to find out the dose of EZN-3042 that can be safely given without serious side effects both alone and in combination with standard chemotherapy drugs during re-induction.

TERMINATED
Haploidentical Natural Killer (NK) Cells With Epratuzumab for Relapsed Acute Lymphoblastic Leukemia (ALL)
Description

The goal of this clinical research study is to learn if transferring the donor's NK cells, in combination with an antibody called epratuzumab and low-dose interleukin (IL-2), into your body can be done safely. Researchers want to find out if the infused NK cells will survive after the infusion and if the NK cell infusion helps to destroy cancer cells in the recipient's body and possibly to help control the disease. Primary Objectives: · Evaluate the feasibility of collecting an adequate number of natural killer (NK) cells from a donor and evaluate the safety of a haploidentical donor-derived NK cell infusion, Epratuzumab, and low-dose interleukin-2 (IL-2). Secondary Objectives: * Quantification and persistence of the infused donor NK cell in vivo; * Quantification and persistence of cytokine levels; * Assessment of NK cell immunophenotype and function; * Correlate above with anti-tumor effect.

RECRUITING
Study of Pedi-cRIB: Mini-Hyper-CVD With Condensed Rituximab, Inotuzumab Ozogamicin and Blinatumomab (cRIB) for Relapsed Therapy for Pediatric With B-Cell Lineage Acute Lymphocytic Leukemia
Description

To learn if cyclophosphamide, vincristine, and dexamethasone (called mini hyper-CVD) in combination with intrathecal (delivered into the spine) chemotherapy (methotrexate, hydrocortisone, cytarabine) and compressed rituximab, blinatumomab, and inotuzumab ozogamicin (called cRIB) can help to control the disease.

Conditions
COMPLETED
POETIC Plerixafor as a Chemosensitizing Agent for Relapsed Acute Leukemia and MDS in Pediatric Patients
Description

In this Phase I study, we will test the safety of the drug plerixafor (MOBOZIL) at different dose levels, used together with other anti-cancer drugs-cytarabine and etoposide. We want to find out what effects, good and /or bad, this combination of drugs has on leukemia. Plerixafor is a drug that blocks a receptor on the leukemia cell, which prevents it from staying in the bone marrow where it can be resistant to chemotherapy. Plerixafor is FDA approved for mobilizing stem cells from the bone marrow in preparation for an autologous stem cell transplant. Cytarabine and etoposide have been used as part of standard chemotherapy for ALL and AML. However, the use of plerixafor with cytarabine and etoposide in pediatric patients with relapsed or refractory ALL, AML and MDS is considered experimental.

TERMINATED
Phase I Study of GNKG168 in Acute Lymphoblastic Leukemia and Acute Myelogenous Leukemia
Description

This is a phase I trial of an investigational drug called GNKG168 in patients with relapsed and refractory acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia (AML) who are in morphologic remission but are positive for Minimum Residual Disease (MRD).

WITHDRAWN
Intravenous Ixazomib in Pediatric Participants With Relapsed or Refractory Acute Lymphoblastic Leukemia (ALL) or Lymphoblastic Lymphoma (LLy)
Description

The purpose of this study is to determine the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D), safety and toxicity, and pharmacokinetics (PK) of ixazomib administered intravenously in combination with multiagent reinduction chemotherapy in pediatric participants with relapsed/refractory ALL or LLy.

COMPLETED
Study of UCART19 in Pediatric Patients With Relapsed/Refractory B Acute Lymphoblastic Leukemia
Description

This study aims to evaluate the safety and feasibility of UCART19 to induce molecular remission in pediatric patients with relapsed or refractory CD19-positive B-cell acute lymphoblastic leukemia (B-ALL).

COMPLETED
A Phase I Study of 5-Azacytidine in Combination With Chemotherapy for Children With Relapsed or Refractory ALL or AML
Description

This is a Phase I study with a conditional cohort expansion phase to evaluate the feasibility of, and to obtain preliminary efficacy data about, pretreatment with Azacytidine (AZA) for 5 days followed by fludarabine/cytarabine chemotherapy regimen in pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients who are refractory to primary treatment or who relapsed.

ACTIVE_NOT_RECRUITING
A Pediatric Trial of Genetically Modified Autologous T Cells Directed Against CD19 for Relapsed CD19+ Acute Lymphoblastic Leukemia
Description

Patients with relapsed leukemia often develop resistance to chemotherapy. For this reason, we are attempting to use a patient's own T cells, which can be genetically modified to expresses a chimeric antigen receptor(CAR). The CAR enables the T cell to recognize and kill the leukemic cells though the recognition of CD19, a protein expressed on the surface of the majority of pediatric ALL. This is a phase I study designed to determine the maximum tolerated dose of the CAR+ T cells and define the toxicity of the treatment. As a secondary aim, we will be looking at the efficacy of the T cells on eradicating the patient's leukemic cells.

Conditions
RECRUITING
A Study of CD19 Targeted CAR T Cell Therapy in Pediatric Patients With Relapsed or Refractory B Cell Acute Lymphoblastic Leukemia (B ALL) and Aggressive Mature B-cell Non-Hodgkin Lymphoma (B NHL)
Description

This is a Phase Ib study to evaluate the safety and efficacy of autologous T cells engineered with a chimeric antigen receptor (CAR) targeting cluster of differentiation (CD)19 in pediatric patients with relapsed or refractory (r/r) B cell acute lymphoblastic leukemia (B ALL) and r/r B cell Non-Hodgkin lymphoma (B NHL)

ACTIVE_NOT_RECRUITING
Evaluation of CD19-Specific CAR Engineered Autologous T-Cells for Treatment of Relapsed/Refractory CD19+ Acute Lymphoblastic Leukemia
Description

SJCAR19 is a research study seeking to evaluate the use of chimeric antigen receptor (CAR) T cell therapy, a type of cellular therapy, for the treatment of pediatric, adolescent and young adult patients with relapsed or refractory CD19+ acute lymphoblastic leukemia (ALL). CAR therapy combines two of the body's basic disease fighters: antibodies and T Cells. For this type of therapy, peripheral (circulating) immune cells are collected and then undergo a manufacturing process to engineer them to more effectively kill cancer cells. The SJCAR19 product will be manufactured at the St. Jude Children's Research Hospital's Good Manufacturing Practice (GMP) facility. The main purpose of this study is to determine: 1. The largest dose of SJCAR19 that is safe to give, 2. How long SJCAR19 cells last in the body, 3. The side effects of SJCAR19, and 4. Whether or not treatment with SJCAR19 is effective in treating people with refractory or relapsed ALL.