136 Clinical Trials for Various Conditions
This clinical trial focuses on pediatric patients aged 2 up to 18 years of age with a new or recurrent pediatric brain tumor, suspected to be either a high-grade or low-grade glioma, and scheduled for surgical removal. 5-aminolevulinic acid (5-ALA) is FDA-approved for improving brain tumor visualization in adults during surgery through fluorescence, enabling more complete removal of the tumor. This study aims to evaluate the feasibility of administering 5-ALA to pediatric brain tumor patients and to assess the quality of tumor fluorescence during surgery in this patient population. For the clinical trial, the patient will orally ingest 5-ALA 6 to 12 hours before brain surgery. All study participants will be provided standard medical care for removal of the brain tumor. All children enrolled in the study will be closely monitored prior to, during, and after surgery to ensure there are no reactions to the study drug. 5-ALA can make the patient more sensitive to sunlight and direct indoor lighting, referred to as photosensitivity, and can cause a sunburn-type reaction. It is for this reason that patients will be kept in subdued light conditions for 48 hours following surgery. Study participation starts once the patient is enrolled in the study until 6-month post-surgery.
This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.
With modern therapy, the survival rate for pediatric brain tumor patients has significantly improved, with over 70% of patients surviving their disease. However, this progress often comes at the cost of substantial morbidity, with cognitive deficits being the primary obstacle to independent living. Robust predictors of cognitive decline and a comprehensive understanding of the underlying mechanisms of cognitive injury remain elusive. This study will prospectively investigate alterations in brain resting state networks following radiation therapy using functional imaging. The hypothesis is that radiation therapy leads to dose-dependent alterations in functional connectivity in the networks associated with higher level cognition, ultimately leading to cognitive decline.
This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.
The purpose of this study is to determine whether a 16-week virtual, home-based, high-intensity interval training (HIIT) exercise program will improve physical, cognitive, and emotional health among young adult survivors of pediatric brain tumors. The names of the study interventions involved in this study are/is: * High-Intensity Interval Training (HIIT)
This is a longitudinal, dose-finding, open label safety and tolerability phase Ib treatment study. The study hypothesis is that dapagliflozin will be well-tolerated by brain tumor patients on chemotherapy as assessed by tolerability and side effect profiles.
Children and adolescents treated for a brain tumor often experience fatigue and cognitive symptoms, such as slowed information processing and inattention. These symptoms may cause difficulty carrying out daily activities at home and at school. There are few well-researched, non-pharmacological interventions aimed at improving symptoms of fatigue and by extension cognitive symptoms. Systematic bright light exposure has been shown to improve symptoms of fatigue in adult survivors of cancer and children treated for some forms of cancer. This is a pilot/feasibility study and the first known study in children treated for a brain tumor. Findings from this study will be used to help plan a larger study to examine the effectiveness of this intervention and mechanisms of action. PRIMARY OBJECTIVE: 1. To evaluate feasibility and adherence in a study of systematic bright light exposure used to improve fatigue and cognitive efficiency in survivors of pediatric brain tumor, including rates of enrollment, adherence, and acceptability. SECONDARY OBJECTIVES: 2. To estimate the effect size of change in fatigue associated with bright light exposure. 3. To estimate the effect size of change in cognitive efficiency associated with bright light exposure.
Recent lab-based discoveries suggest that IDO (indoleamine 2,3-dioxygenase) and BTK (Bruton's tyrosine Kinase) form a closely linked metabolic checkpoint in tumor-associated antigen-presenting cells. The central clinical hypothesis for the GCC2020 study is that combining ibrutinib (BTK-inhibitor) with indoximod (IDO-inhibitor) during chemotherapy will synergistically enhance anti-tumor immune responses, leading to improvement in clinical response with manageable overlapping toxicity. GCC2020 is a prospective open-label phase 1 trial to determine the best safe dose of ibrutinib to use in combination with a previously studied chemo-immunotherapy regimen, comprised of the IDO-inhibitor indoximod plus oral metronomic cyclophosphamide and etoposide (4-drug combination) for participants, age 6 to 25 years, with relapsed or refractory primary brain cancer. Those previously treated with indoximod plus temozolomide may be eligible, including prior treatment via the phase 2 indoximod study (GCC1949, NCT04049669), the now closed phase 1 study (NLG2105, NCT02502708), or any expanded access (compassionate use) protocols. A dose-escalation cohort will determine the best safe dose of ibrutinib for the 4-drug combination. This will be followed by an expansion cohort, using ibrutinib at the best safe dose in the 4-drug combination, to allow assessment of preliminary evidence of efficacy.
The investigators will develop the concept of a sex-specific therapeutic intervention for gliomas that is based upon dietary carbohydrate restriction. The investigators will integrate metabolomics tools and FDG-PET imaging to validate the ketogenic diet on a sex-specific basis.
The primary objectives of this study are: 1. Determine the percentage of patients whose surgical plan would change with FET-PET/MRI compared to MRI alone. 2. Determine the percentage of patients who have residual tumor after surgery detected with FET-PET/MRI. A secondary objective of this study is: 1) Perform preliminary correlations between the pre- and post-surgical metabolic tumor volumes measured with FET-PET/MRI to progression free survival.
Children with brain tumors are at risk for a number of psychological late effects, including neurocognitive and social deficits. This observational study focuses on assessment of social functioning, including social-cognitive and neurocognitive abilities, in survivors of pediatric brain tumors. This study will also assess the influence of medical factors, including diagnosis and age at diagnosis, on social functioning. PRIMARY OBJECTIVE: Examine the impact of social-cognitive and neurocognitive abilities on social functioning in survivors of pediatric brain tumors. SECONDARY OBJECTIVE: Assess the influence of medical factors such as diagnosis and age at diagnosis on the social functioning of survivors of pediatric brain tumors.
The goal of this study is to learn about the cognitive and behavioral functioning of children being treated for cancer.
The investigators will focus on three cohorts of brain tumor patients aged, 4-18 years, to answer two critical questions: 1) Can the investigators acquire high quality data relevant to cognitive function during the peri-diagnostic period and, 2) can the investigators develop predictive models for cognitive outcomes using serial examination of functional imaging and cognitive function. Any patient with a newly diagnosed brain tumor aged 4-18 will be eligible for enrollment in cohort 1. Only patients with previously diagnosed tumors of the posterior fossa will be eligible for cohort 2. For cohort 3, eligible patients will include patients with a clinical diagnosis of posterior fossa syndrome with physical impairments that prohibit completion of the NIH Toolbox Cognitive Battery. The investigators have decided to expand the eligible tumor types to better capture the most significant deficit variability that can be caused by tumors outside the posterior fossa. Thus, this focus will provide a platform to analyze the impact that different tumor types and different standard treatments have on cognitive dysfunction. The rationale for inclusion of subjects on cohort 3 is that posterior fossa syndrome is one of the most cognitively devastating diagnoses following a posterior fossa surgery. The causes of posterior fossa syndrome and unknown and there are currently no interventions to improve symptoms. RsfcMRI would offer a novel and non-invasive assessment of posterior fossa syndrome patients by assessing connectivity within and outside of the cerebellum. Expanding the tumor eligibility will allow us to further explore the effect tumor location will have on cognitive testing and rsfcMRI. Here, repeated evaluations on and off therapy will provide the necessary data points to establish trajectories of cognitive development and recovery in this population.
This is a safety (Phase 1) trial using mebendazole for recurrent pediatric brain cancers that include medulloblastoma and high grade glioma, that are no longing responding to standard therapies. The drug mebendazole is an oral drug in a chewable 500 mg orange flavored tablet. It is already approved to treat parasitic infections. The purpose of this study is to determine the safety and side effects for increasing doses of mebendazole, followed by the treatment of an additional 12 patients at the best tolerated dose.
By employing a combination of advanced MRI techniques and correlative serum biomarkers of blood brain barrier (BBB) disruption, the investigators plan to develop a powerful, first of its kind clinical algorithm in pediatrics whereby the investigators can measure and identify the window of maximal BBB disruption post MLA to 1) allow for an alternative to surgery in incompletely resected tumors, 2) allow for optimal chemotherapeutic dosing to achieve the greatest benefits and the least systemic side effects and 3) distinguish subsequent tumor progression from long-term MLA treatment effects. Preliminary data in adult imaging studies have shown that the BBB disruption lasts for several weeks following treatment before returning to a low baseline. This pilot therapeutic study will provide preliminary validation in pediatric patients.
This research will leverage novel pilot research conducted by the investigators to take important first steps in addressing neurocognitive late effects by intervening early, during treatment, with a promising computerized cognitive remediation program to prevent the downward trajectory of neurocognitive function experienced by pediatric brain tumor survivors. Specifically, we propose to test the feasibility, acceptability, and initial proof of concept of a neuroplasticity-based adaptive cognitive training program (Cogmed) to train working memory (WM) and attention in newly diagnosed youth with a brain tumor. Further, we will test the feasibility of using this intervention in a true prospective design beginning pre-surgery to examine the effects of this intervention in deflecting the downward trajectory of cognitive function in children with brain tumors during treatment. We will also use functional neuroimaging (near infrared spectroscopy - "NIRS") to examine the effects of this program on brain activation in frontal regions that are affected by treatment. Findings from this pilot study will inform the development of a large multi-site randomized efficacy trial to test an individualized cognitive training program. Aim 1. To test the feasibility and acceptability of enrolling youth (7 to 16 years-old) with newly diagnosed brain tumors at time of diagnosis, following patients for 10 weeks, delivering the Cogmed computer-based training program in a randomized trial at 10-weeks post-diagnosis, and following patients to 1 year post-diagnosis. Aim 2. To test the initial acceptability and efficacy of the Cogmed training program on cognitive function in newly diagnosed pediatric brain tumor patients.
DC vaccine manufactured and partially matured using our standard operating procedures, developed in collaboration with the HGG Immuno Group, then administered through imiquimod treated skin will be safe and feasible in children with refractory brain tumors. This will result in anti-tumor immunity that will prolong survival of subjects treated and results will be consistent with the outcomes found for subjects treated by HGG Immuno Group investigators. Study treatment will correlate with laboratory evidence of immune activation. Correlative studies will also reveal targets in the immune system which can be exploited to improve response for patients on successor trials.
The goal of this proposal is to evaluate a new Photodynamic Therapy (PDT) modification which could revolutionize the treatment of brain tumors in children and adults. There are currently few cases published involving the use of PDT in infratentorial (in the posterior fossa) brain tumors in general and specifically those occurring in children. The investigators propose to test a technique, for the first time in the U.S., that demonstrated in Australian adult glioblastoma patients dramatic long-term, survival rates of 57% (anaplastic astrocytoma) and 37% (glioblastoma multiforme). These results are unprecedented in any other treatment protocol. Photodynamic therapy (PDT) is a paradigm shift in the treatment of tumors from the traditional resection and systemic chemotherapy methods. The principle behind photodynamic therapy is light-mediated activation of a photosensitizer that is selectively accumulated in the target tissue, causing tumor cell destruction through singlet oxygen production. Therefore, the photosensitizer is considered to be the first critical element in PDT procedures, and the activation procedure is the second step. The methodology used in this proposal utilizes more intensive laser light and larger Photofrin photosensitizer doses than prior PDT protocols in the U.S. for brain tumor patients. The PDT will consist of photoillumination at 630 nm beginning at the center of the tumor resection cavity, and delivering a total energy of 240 J cm-2. The investigators feel that the light should penetrate far enough into the tissue to reach migrating tumor cells, and destroy these cells without harming the healthy cells in which they are dispersed. The investigators will be testing the hypothesis that pediatric subjects with progressive/recurrent malignant brain tumors undergoing PDT with increased doses of Photofrin® and light energy than were used in our previous clinical study will show better progression free survival (PFS) and overall survival (OS) outcomes. PDT will also be effective against infratentorial tumors. The specific aims include determining the maximum tolerable dose (MTD) of Photofrin in children and looking for preliminary effectiveness trends.
In normal patients, blood and cerebrospinal fluid (CSF) contain circulating cells and other molecules such as proteins and nucleic acids. In patients with central nervous system (CNS) and other conditions, the levels of these molecules may be altered. In several other studies at our institution, the investigators are investigating such molecules in tumor specimens as well as the blood and cerebrospinal fluid of pediatric patients with CNS tumors. However, these levels are difficult to interpret without comparing them to levels in patients without CNS tumors. The investigators propose a study to collect small amounts of blood and cerebrospinal fluid from pediatric patients without CNS tumors who are undergoing a diagnostic or therapeutic neurosurgical procedure aimed at addressing altered CSF dynamics.
Some patients with brain tumors receive standard radiation to help prevent tumor growth. Although standard radiation kills tumor cells, it can also damage normal tissue in the process and lead to more side effects. This research study is looking at a different form of radiation called proton radiotherapy which helps spare normal tissues while delivering radiation to the tumor or tumor bed. Proton techniques irradiate 2-3 times less normal tissue then standard radiation. This therapy has been used in treatment of other cancers and information from those other research studies suggests that this therapy may help better target brain tumors then standard radiation.
The aim of this study is to follow up with all of the pediatric brain tumor patients who received proton beam radiation therapy at Massachusetts General Hospital (MGH) for which there is baseline neuropsychological testing in order to measure changes, if any, in neurobehavioral functioning (executive skills, emotional/behavioral functioning, and adaptive abilities) and their use of special education services at one year or more post-treatment. The investigators will also correlate neurobehavioral data with pertinent clinical information. Participation will be maximized through the use of mail-in, parental- and self-report questionnaires.
The purpose of this study is to get information regarding the usefulness and accuracy of this new magnetic resonance imaging (MRI) technique - termed arterial spin labeling (ASL) - in the diagnosis of pediatric brain tumors.
The purpose of this pilot study is to determine if patients randomized to a hospital sleep environment intervention would have improved sleep quality and reduced fatigue as compared to the patients not receiving the intervention (standard care).
This study will evaluate the administration of AdV-tk followed by valacyclovir in children with malignant glioma, including glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), as well as recurrent ependymomas in combination with radiation therapy. The primary objective is to determine if this approach is safe and can be effectively delivered without disturbing standard therapy.
The purpose of the study was to determine if treating a limited volume of normal tissue surrounding the tumor or tumor bed using conformal radiation therapy would achieve similar rates of disease control compared to standard radiation therapy. The study was also conducted to examine the effect of irradiation on neurological, endocrine and cognitive function.
The purpose of this study is to evaluate the sensitivity and specificity of "A-PROTEIN" levels in patients with brain tumors. A-PROTEIN levels will be analyzed both pre and post treatment. Levels in blood and/or cerebrospinal fluid (CSF) will be analyzed and correlated with the underlying diagnosis and outcome.
This study in children and young adults will compare two types of imaging, positron emission tomography (\[(18)F\]-DG PET) and proton magnetic resonance spectroscopy ((1)H-MRSI), to determine activity of a brain tumor or abnormal tissue in the brain following treatment for a brain tumor. Children with brain tumors are generally followed with magnetic resonance imaging (MRI) scans to evaluate response to treatment. However, because MRI only provides information on the structure of the brain, it may difficult to tell if an abnormal finding is due to tumor, swelling, scar tissue, or dead tissue. (1)H-MRSI and \[(18)F\]-DG PET, on the other hand, provide information on the metabolic activity of brain lesions. These two methods will be compared and evaluated for their ability to provide important additional information on childhood brain tumors. Patients between 1 and 21 years of age with a brain tumor or brain tissue abnormality following treatment for a brain tumor may be eligible for this study. Candidates will be screened with a medical history and physical examination, pregnancy test in women who are able to become pregnant, and a blood test for glucose. Participants will undergo the following procedures: (1)H-MRSI - This test is similar to MRI and is done in the same scanning machine. In MRI, scans of the brain are obtained by applying a strong magnetic field and then collecting the signals released from water after the magnetic field is changed. Pictures of the brain are then obtained by computer analysis of these signals. In (1)H-MRSI, the computer blocks the signal from water to get information on brain chemicals that can indicate whether an abnormality is tumor or dead tissue. Both MRI and MRI and (1)H-MRSI are done in this study. For these tests, the child lies on a stretcher that moves into the scanner - a narrow metal cylinder with a strong magnetic field. The child's head is placed in a headrest to prevent movement during the scan. He or she will hear loud thumping noises caused by the electrical switching of the magnetic field. A contrast agent is given through an intravenous (IV) catheter (plastic tube placed in an arm vein) or through a central line if one is in place. The contrast material brightens the images to provide a clearer picture of abnormalities. Children who have difficulty holding still or being in a scanning machine are given medications by an anesthesiologist to make them sleep through the procedure. Children who are awake during the procedure can communicate with the MRI technician at all times and ask to be removed from the scanner at any time. The MRI and (1)H-MRSI take 1-1/2 to 2 hours to complete. \[(18)F\]-DG PET - For this test, \[(18)F\]-DG (a radioactive form of glucose) is injected into the patient's arm vein through a catheter, followed by the PET scan, similar to a very open MRI scan without the noise. The PET scan tells how active the patient's tumor is by tracking the radioactive glucose. All cells use glucose, but cells with increased metabolism, such as cancer cells, use more glucose than normal cells. After the glucose injection, the patient lies quietly in a darkened room for 30 minutes, after which he or she is asked to urinate to help reduce the dose of radiation to the bladder. Then, the scan begins. When the scan is finished (after about 1 hour), the child is asked to urinate again and then every 3 to 4 hours for the rest of the day. Patients remain in the study for 2 years unless they withdraw, become pregnant, or require sedation but can no longer use an anesthetic. MRI and 1H-MRSI scans may be repeated every few months during the study period, if necessary. Only one PET scan is done each year.
This study aims to investigate a neurologic exam scale to provide an objective and more standard way to assess tumor response in pediatric patients with brain and spinal cord tumors.
This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. The main purpose of this study is to evaluate the safety and tolerability of a single tumor injection of Ad-RTS-hIL-12 given with oral veledimex in the pediatric population.
This is a single arm pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The pilot study will look at the safety and toxicity of acquiring hyperpolarized carbon-13 imaging in children with brain tumors.