178 Clinical Trials for Various Conditions
The purpose of this study is to assess Tacrolimus/Methotrexate/Ruxolitinib versus Post-Transplant Cyclophosphamide/Tacrolimus/Mycophenolate Mofetil in Non-Myeloablative/Reduced Intensity Conditioning Allogeneic Peripheral Blood Stem Cell Transplantation
This research is being done to investigate the safety and effectiveness of Darzalex Faspro (daratumumab and hyaluronidase-fihj) (a monoclonal antibody that targets plasma cells that make antibodies) and whether it can lower donor specific antibodies (DSA) levels to low enough levels to permit patients to proceed with allogeneic peripheral blood transplant (alloBMT). Those being asked to participate have high DSA levels that puts those being asked to participate at high risk of rejecting the available donor's blood stem cells and making those being asked to participate ineligible to receive a stem cell transplant.
The goal of this clinical trial is to determine the effectiveness of Reduced Dose Post-Transplant Cyclophosphamide (PTCy) in patients with hematologic malignancies after receiving an HLA-Mismatched Unrelated Donor (MMUD) . The main question\[s\] it aims to answer are: * Does a reduced dose of PTCy reduce the occurrence of infections in the first 100 days after transplant? * Does a reduced dose of PTCy maintain the same level of protection against Graft Versus Host Disease (GvHD) as the standard dose of PTCy?
Background: Blood cancers (such as leukemias or lymphomas) often do not respond to standard treatments. A transplant of blood stem cells from a healthy donor can help people with these cancers. Sometimes these transplants cause serious side effects, including a common immunologic problem called graft-versus-host disease. A drug called cyclophosphamide given early after the transplant (post-transplantation cyclophosphamide, PTCy) can reduce these complications. But sometimes this drug has its own negative effects. Furthermore, studies in mice suggest that an intermediate, rather than very high, dose of this drug may best protect against graft-versus-host disease. Objective: To find out if a lower dose of PTCy is more helpful for people who undergo blood stem cell transplants. Eligibility: People aged 18 and older who have a blood cancer and are eligible for a transplant of blood stem cells from another person. Healthy donors are also needed but must be related to the individual needing the transplant. Design: Participants will undergo screening. Transplant recipients will have imaging scans and tests of their heart and lung function. They will be assessed for the status of their cancer, including bone marrow taken from their pelvis and possibly also scans and/or fluid drawn from the spine depending on the disease type. Donors will be screened for general health. They will give several tubes of blood. They will give an oral swab and saliva and stool samples for research. Recipients will be in the hospital at least 4 to 6 weeks. They will have a temporary catheter inserted into a vein in the chest or neck. Medications will be given and blood will be drawn through the catheter. The transplanted stem cells will be given through the catheter. Participants will receive medications both before and after the transplant. Participants will return to the clinic at least once a week for 3 months after leaving the hospital. Follow-up visits will continue periodically for 5 years.
Background: Sickle cell disease can often be treated with blood stem cell transplants. But for some people the disease returns. This study will give a second transplant to people whose disease has returned but still have some donor cells in their body. Objective: To cure people s sickle cell disease by giving a second treatment that makes more room in their bone marrow for donor cells. Eligibility: People ages 4 and older with sickle cell disease who had a transplant but the disease returned, and their donor relatives. Donors can be 2 years of age or older. Design: Participants will be screened with medical history, physical exam, and blood tests. Recipients will also be screened with heart and breathing tests, x-rays, a bone marrow sample, and teeth and eye exams. They must have a caregiver. Donors will have 7-8 visits. They will take a drug for 5-6 days to prepare them for the donation. For the donation, blood is taken from a vein in the arm or groin. The stem cells are collected. The rest of the blood is returned. This may be repeated. Recipients will get a long IV line in their arm or chest for about 1-2 months. They will take drugs to help their body accept the donor cells. They will get the donor cells and red blood cell transfusions through the line. They will stay in the hospital about 30 days after the transfusion of donor cells. In first 3 months after the infusion, recipients will have many visits. Then they will have visits every 6 months to 1 year for 5 years. During those visits they will repeat some of the screening tests....
Now haplo stem cell transplant using bone marrow or peripheral blood is becoming more feasible with better regimens to prevent graft versus host disease (GVHD) like post transplant cyclophosphamide , tacrolimus, mycophenolate . Recently Bortezomib has also been shown to inhibit dendritic cells maturation and function and possesses a number of other favorable immunomodulatory effect that can prevent GVHD and help enhance immune reconstitution. this study is to assess the engraftment rate in patients with hematologic malignancies who need allogeneic stem cell transplant but do not have a suitable matched related or unrelated stem cell donor and will get T-cell replete HLA-Haploidentical allogeneic peripheral stem cell transplantation using post transplant Cyclophosphamide and bortezomib
This research study is studying the removal of a subset of white blood cells (called alpha/beta T cells) from the donor product using a cell separation device before the product is transplanted into the participant. The device used to remove the α/βT cells in this study is: -CliniMACS® TCR α/β Reagent System
The purpose of this study is to find out if removing a specific type of white blood cell (called alpha beta T-cell) that help make up the transplant donor's stem cells can improve results of blood stem cell transplant for the participant's disease.
This phase II trial studies how well 3 different drug combinations prevent graft versus host disease (GVHD) after donor stem cell transplant. Calcineurin inhibitors, such as cyclosporine and tacrolimus, may stop the activity of donor cells that can cause GVHD. Chemotherapy drugs, such as cyclophosphamide and methotrexate, may also stop the donor cells that can lead to GVHD while not affecting the cancer-fighting donor cells. Immunosuppressive therapy, such as anti-thymocyte globulin (ATG), is used to decrease the body's immune response and reduces the risk of GVHD. It is not yet known which combination of drugs: 1) ATG, methotrexate, and calcineurin inhibitor 2) cyclophosphamide and calcineurin inhibitor, or 3) methotrexate and calcineurin inhibitor may work best to prevent graft versus host disease and result in best overall outcome after donor stem cell transplant.
This is an open label phase II single arm study of peripheral blood stem cell transplantation and posttransplantation cyclophosphamide, using HLA full match or haploidentical related donors, in hematological malignancies including those difficult to engraft. The objective of this study is to evaluate the safety and feasibility in nonmyeloablative, partially HLA-mismatched or HLA-matched PBSC transplant from haploidentical donors or fully matched donors with post-grafting immunosuppression that includes high-dose cyclophosphamide, tacrolimus, and Mycophenolate mofetil (MMF).
This research study is studying a drug called obinutuzumab as a means of preventing chronic Graft vs. Host Disease (cGVHD).
Chronic granulomatous disease (CGD) affects white blood cell function. Currently, the only curative treatment is bone marrow transplant to replace the abnormal stem cells with new ones (donor cells) capable of making a normal immune system. Transplant problems include graft versus host disease (GvHD) and graft rejection. With GvHD, donor cells attack the recipient s normal tissue. Researchers want to use preparation drugs and a high cell dose to increase graft success. They want to use 2 immunosuppressive drugs (cyclophosphamide and sirolimus) to lessen the risk of GvHD. ...
This is a single arm pilot study for patients with hematologic malignancies with alternative donor sources receiving unrelated or partially matched related/Haploidentical mobilized peripheral stem cells (PSCs) using the CliniMACS system for Alpha Beta T cell depletion plus CD19+ B cell depletion to determine efficacy as determined by engraftment and GVHD, and one year leukemia free survival.
Study CR-AIR-006 is a part of the ATIR clinical development plan and will provide control data for patients treated with ATIR in clinical studies (e.g. study CR-AIR-007).
By doing this study, researchers hope to learn the following: * The safety of hyperbaric oxygen administration in the setting of the autologous transplant * The effects of hyperbaric oxygen administration on neutrophil count recovery and engraftment
The purpose of this study is to evaluate the efficacy of TXA127 to reduce the incidence (Grade II-IV) of acute Graft-vs.-Host Disease (aGVHD) in adult subjects undergoing allogeneic peripheral blood stem cell transplantation (PBSCT). The study will also evaluate the effects of TXA127 on incidence, severity and duration of mucositis; neutrophil engraftment and platelet recovery; platelet transfusion requirements; immune reconstitution; and duration of corticosteroid use. TXA127 has shown to be well tolerated by patients and appears to induce rapid production of neutrophils and platelets in the bloodstream, as well as increase the immune system components. TXA127 has also been shown reduce the severity of chemotherapy-induced mucositis.
This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
The purpose of this study is to find out whether the addition of blood stem cells from a close family member, when added to umbilical cord blood will make the transplant safer.
This is a phase I single center dose escalation study with an extension at the best available dose to determine the tolerability of inducible regulatory T cells (iTregs) when given to adult patients undergoing non-myeloablative HLA-identical sibling donor peripheral blood stem cell (PBSC) transplantation for the treatment of a high risk malignancy. Up to 5 dose cohorts will be tested. Once the tolerable dose is determined for iTregs, enrollment will continue with an additional 10 patients using sirolimus/Mycophenolate mofetil (MMF) graft-versus-host disease (GVHD) prophylaxis to gain further safety information and to provide pilot data in this treatment setting.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase II trial studies how well donor atorvastatin treatment works in preventing severe graft-versus-host disease (GVHD) after nonmyeloablative peripheral blood stem cell (PBSC) transplant in patients with hematological malignancies. Giving low doses of chemotherapy, such as fludarabine phosphate, before a donor PBSC transplantation slows the growth of cancer cells and may also prevent the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also cause an immune response against the body's normal cells (GVHD). Giving atorvastatin to the donor before transplant may prevent severe GVHD.
This phase II trial studies donor atorvastatin treatment for the prevention of severe acute graft-versus-host disease (GVHD) in patients undergoing myeloablative peripheral blood stem cell (PBSC) transplantation. Giving chemotherapy and total-body irradiation (TBI) before a donor PBSC transplant helps stop the growth of cancer cells. It may also prevent the patient's immune system reject the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving atorvastatin to the donor before transplant may prevent this from happening.
This phase I trial studies the side effects and best dose of yttrium Y 90 anti-CD45 monoclonal antibody BC8 when given together with fludarabine phosphate and total-body irradiation followed by donor peripheral blood stem cell transplant in treating patients with multiple myeloma. Radiolabeled monoclonal antibodies, such as yttrium Y 90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving yttrium Y 90 anti-CD45 monoclonal antibody BC8, fludarabine phosphate, and total-body irradiation before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening and may be an effective treatment for multiple myeloma.
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This phase I/II trial studies the side effects and best dose of genetically engineered lymphocyte therapy and to see how well it works after peripheral blood stem cell transplant (PBSCT) in treating patients with high-risk, intermediate-grade, B-cell non-Hodgkin lymphoma (NHL). Genetically engineered lymphocyte therapy may stimulate the immune system in different ways and stop cancer cells from growing. Giving rituximab together with chemotherapy before a PBSCT stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim (G-CSF), or plerixafor helps stem cells move from the bone marrow to the blood so they can be collected and stored. More chemotherapy or radiation therapy is given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Giving genetically engineered lymphocyte therapy after PBSCT may be an effective treatment for NHL.
Background: * Bone marrow stem cells, which are found in the bone marrow and blood stream, can be collected and transplanted to treat a variety of types of cancer in a process known as hematopoietic stem cell transplantation (HSCT). When stem cells are taken from one person, most commonly a sibling or a family member, and then given to another person, this is referred to as allogeneic HSCT. Allogeneic HSCT has proven to be an especially effective treatment for patients with some types of cancers of the blood (leukemia) and certain solid tumors. The transplanted stem cells travel to the patient's bone marrow and begin producing normal blood cells, and also attack patients cancer cells. * Because allogenic HSCT does not always prevent the cancer from returning, researchers are interested in determining whether another type of immune cell taken from the stem cell donors white blood cells, called a "natural killer" (NK) cell, can be given in addition to the HSCT to help fight the tumor. In the laboratory, NK cells have been shown to kill tumor cells, but it is not yet know if this will occur when given to patients after HSCT. Objectives: * To determine the safety, effectiveness, and immune system response of giving NK white blood cells to individuals who have received allogeneic HSCT. * To identify possible side effects from the treatment. Eligibility: * Donors: Stem cell donors whose blood matches one of the recipients on six out of six human leukocyte antigen (HLA) (blood immune marker) types. The donor may not be the identical twin of a recipient. * Recipients: Individuals between 4 and 35 years of age who have been diagnosed with pediatric solid tumors that have not responded to standard treatment, or individuals between 4 and 18 years of age who have been diagnosed with leukemia that has not responded to standard treatment. * Other eligibility requirements which include a physical exam and blood laboratory evaluation are included to make sure it is safe for both the donor to donate and the recipient to undergo the transplant procedure. Design: * Donors and recipients will be screened with a full medical history and physical examination, and will provide blood and urine samples; recipients will have tumor imaging studies and other tests as required by the researchers. * Donors: * Participants will receive filgrastim injections (to stimulate the bone marrow) for 1 week to make stem cells travel from bone marrow to blood. * Participants will provide stem cells and NK cells through apheresis. * Recipients: * Participants will have three cycles of chemotherapy to treat the underlying cancer and weaken the immune system so that it will accept the donor cells. * Participants will then receive preparative chemotherapy for the transplant and two days after the last dose of chemotherapy, participants will have allogenic HSCT using the donated stem cells. * Participants will receive an infusion of NK cells on days 7 and 35 after the HSCT. - Participants will remain in the hospital for monitoring after the HSCT and NK cell treatments, and will be followed closely as outpatients for the first 6 months after the transplant and then less frequently for at least 5 years.
This phase II trial studies the side effects and how well clofarabine works when given together with low-dose total-body irradiation (TBI) in treating patients with acute myeloid leukemia (AML) undergoing donor peripheral blood stem cell transplant (PBSCT). Giving chemotherapy and TBI before a donor PBSCT helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
This phase II trial studies how well sirolimus, cyclosporine and mycophenolate mofetil works in preventing graft-vs-host disease (GVHD) in patients with blood cancer undergoing donor peripheral blood stem cell (PBSC) transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with sirolimus, cyclosporine, and mycophenolate mofetil before and after transplant may stop this from happening.
This randomized phase III trial studies how well graft-vs-host disease (GVHD) prophylaxis works in treating patients with hematologic malignancies undergoing unrelated donor peripheral blood stem cell transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant (PBSCT) helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation (TBI) together with fludarabine phosphate (FLU), cyclosporine (CSP), mycophenolate mofetil (MMF), or sirolimus before transplant may stop this from happening.