351 Clinical Trials for Various Conditions
RATIONALE: Measuring the number of radiolabeled white blood cells in non-Hodgkin's lymphoma tumors may help doctors predict how well patients will respond to treatment, and may help the study of cancer in the future. PURPOSE: This study is measuring radiolabeled white blood cells in patients with non-Hodgkin's lymphoma.
This is a Phase 1, first-in-human (FIH), open-label, multicenter, study of LB1901 administered to adult subjects with histologically confirmed CD4+ relapsed or refractory Peripheral T-cell lymphoma (PTCL) (PTCL not otherwise specified \[PTCL-NOS\] and angioimmunoblastic \[AITL\]), or relapsed or refractory cutaneous T-cell lymphoma (CTCL) (Sézary syndrome \[SS\] and mycosis fungoides \[MF\]).
RATIONALE: Denileukin diftitox may be able to deliver cancer-killing substances directly to T-cell lymphoma cells. Dexamethasone may decrease the side effects of denileukin diftitox. PURPOSE: Phase II trial to study the effectiveness of dexamethasone in preventing side effects following treatment with denileukin diftitox in treating patients who have persistent or recurrent T-cell lymphoma.
This phase I/II trial studies the side effects and best dose of pralatrexate when given together with pembrolizumab and how well they work in treating patients with peripheral T-cell lymphomas that has come back after a period of improvement or has not responded to treatment. Pralatrexate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and pralatrexate may work better in treating patients with peripheral T-cell lymphomas.
This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.
This phase I trial studies the side effects and best dose of olaparib when given together with high-dose chemotherapy in treating patients with lymphomas that have come back or does not treatment and are undergoing stem cell transplant. Drugs used in chemotherapy, such as olaparib, vorinostat, gemcitabine, busulfan, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and high-dose chemotherapy together may work better in treating patients with relapsed/refractory lymphomas undergoing stem cell transplant than with chemotherapy alone.
This phase I/II trial studies the best dose and side effects of dendritic cell therapy, cryosurgery and pembrolizumab in treating patients with non-Hodgkin lymphoma. Vaccines, such as dendritic cell therapy made from a person's tumor cells and white blood cells may help the body build an effective immune response to kill tumor cells. Cryosurgery kills cancer cells by freezing them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving dendritic cell therapy, cryosurgery and pembrolizumab may work better at treating non-Hodgkin lymphoma.
This phase I/II trial studies the side effects and the best dose of radiolabeled monoclonal antibody when given together with combination chemotherapy before stem cell transplant and to see how well it works in treating patients with high-risk lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium Y 90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving chemotherapy before a stem transplant stops the growth of cancer cells by stopping them from dividing or killing them. Stem cells collected from the patient's blood are then returned to the patient to replace the blood-forming cells that were destroyed by the radiolabeled monoclonal antibody and chemotherapy.
This phase I/II trial studies the side effects and the best dose of lenalidomide when given together with temsirolimus and to see how well it works in treating patients with Hodgkin lymphoma or non-Hodgkin lymphoma that has come back after a period of improvement or is not responding to treatment. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Lenalidomide may also stop the growth of Hodgkin lymphoma or non-Hodgkin lymphoma by blocking blood flow to the cancer. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with temsirolimus may kill more cancer cells.
This phase I trial studies the side effects and best dose of iodine I 131 monoclonal antibody BC8 when given before autologous stem cell transplant in treating patients with Hodgkin lymphoma or non-Hodgkin lymphoma that has returned after a period of improvement or does not respond to treatment. Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving iodine I 131 monoclonal antibody BC8 before an autologous stem cell transplant may kill more cancer cells.
This phase II trial is studying how well umbilical cord blood transplant from a donor works in treating patients with hematological cancer. Giving chemotherapy and total-body irradiation (TBI) before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening.
This phase II clinical trial studies how well giving brentuximab vedotin together with pembrolizumab in treating patients with peripheral T-cell lymphoma (PTCL) that has come back (recurrent). Monoclonal antibody-drug conjugates, such as brentuximab vedotin, can block cancer growth in different ways by targeting certain cells. Pembrolizumab is an antibody-drug that stimulates body's natural antitumor immune responses. Giving brentuximab vedotin together with pembrolizumab may work better than brentuximab vedotin alone in treating patients with recurrent peripheral T-cell lymphoma.
The purpose of this trial is to assess the efficacy of E7777 in participants with recurrent or persistent Cutaneous T-Cell Lymphoma (CTCL) in Stage I - III participants as assessed by objective response rate (ORR). A lead-in dose-finding part was used to determine dose level 9 microgram per kilogram (mcg/kg) E7777 that is being used to test efficacy and safety.
This phase I trial studies the side effects and best dose of silicon phthalocyanine 4 and photodynamic therapy in treating patients with stage IA-IIA cutaneous T-cell non-Hodgkin lymphoma. Photodynamic therapy (PDT) uses a drug, silicon phthalocyanine 4, that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against cutaneous T-cell non-Hodgkin lymphoma. Funding Source - FDA OOPD
Phase I/II trial to study the effectiveness of combining interleukin-12 with interleukin-2 in treating patients who have mycosis fungoides. Biological therapies, such as interleukin-12 and interleukin-2, use different ways to stimulate the immune system and stop cancer cells from growing. Combining more than one biological therapy may kill more tumor cells
This phase I/II trial studies the side effects and best dose of modified umbilical cord blood immune cells (natural killer \[NK\] cells) combined with the antibody AFM13 (AFM13-NK) and AFM13 alone in treating patients with CD30 positive Hodgkin lymphoma or non-Hodgkin lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as AFM13, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Giving AFM13 loaded with NK cells followed by AFM13 alone may kill more cancer cells and decrease cancer growth in patients with CD30 positive AFM13-NK Hodgkin and Non-Hodgkin lymphomas.
This phase I/II trial studies the side effects of pembrolizumab and romidepsin and to see how well they work in treating participants with peripheral T-cell lymphoma that has come back or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and romidepsin may work better than pembrolizumab alone in treating participants with recurrent or refractory peripheral T-cell lymphoma.
This phase II trial studies how well nivolumab works in treating patients with peripheral T-cell lymphoma that has come back after a period of improvement or that does not respond to treatment. Monoclonal antibodies, such as nivolumab, may block cancer growth in different ways by targeting certain cells.
This phase I trial studies the best dose and side effects of the VSV-hIFNβ-NIS vaccine with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab in treating patients with multiple myeloma, acute myeloid leukemia or lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). VSV-IFNβ-NIS is a modified version of the vesicular stomatitis virus (also called VSV). This virus can cause infection and when it does it typically infects pigs, cattle, or horses but not humans. The VSV used in this study has been altered by having two extra genes (pieces of DNA) added. The first gene makes a protein called NIS that is inserted into the VSV. NIS is normally found in the thyroid gland (a small gland in the neck) and helps the body concentrate iodine. Having this additional gene will make it possible to track where the virus goes in the body (which organs). The second addition is a gene for human interferon beta (β) or hIFNβ. Interferon is a natural anti-viral protein, intended to protect normal healthy cells from becoming infected with the virus. VSV is very sensitive to the effect of interferon. Many tumor cells have lost the capacity to either produce or respond to interferon. Thus, interferon production by tumor cells infected with VSV-IFNβ-NIS will protect normal cells but not the tumor cells. The VSV with these two extra pieces is referred to as VSV-IFNβ-NIS. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Immunotherapy with monoclonal antibodies, such as ipilimumab, nivolumab, and cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving VSV-IFNβ-NIS with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab may be safe and effective in treating patients with recurrent peripheral T-cell lymphoma.
This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.
This phase I trial studies the best dose and side effects of romidepsin when given in combination with ifosfamide, carboplatin, and etoposide in treating participants with peripheral T-cell lymphoma that has come back or does not respond to treatment. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving romidepsin, ifosfamide, carboplatin, and etoposide may work better in treating participants with peripheral T-cell lymphoma.
RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies
This phase II trial studies how well pembrolizumab and external beam radiation therapy work in treating patients with non-Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and external beam radiation therapy may work better in treating patients with non-Hodgkin lymphoma than pembrolizumab alone.
This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.
This phase I trial studies the side effects and best dose of yttrium Y 90 basiliximab when given together with standard combination chemotherapy before a stem cell transplant in treating patients with mature T-cell non-Hodgkin lymphoma. Radioactive substances linked to monoclonal antibodies, such as yttrium Y 90 basiliximab, can bind to cancer cells and give off radiation which may help kill cancer cells. Drugs used in chemotherapy, such as carmustine, cytarabine, etoposide, and melphalan (BEAM), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving yttrium Y 90 basiliximab and chemotherapy before a stem cell transplant may help kill any cancer cells that are in the body and help make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Stem cells that were collected from the patient's blood and stored before treatment are later returned to the patient to replace the blood-forming cells that were destroyed.
RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer
RATIONALE: Low dose deferasirox may be safe and effective in treating patients who have undergone hematopoietic stem cell transplant and have iron overload. PURPOSE: This pilot clinical trial studies safety and tolerability of deferasirox in hematopoietic stem cell transplant recipients who have iron overload. Effect of low dose deferasirox on labile plasma iron is also examined.
RATIONALE: A personalized Internet-based program may help improve fatigue, depression, and quality of life in long-term survivors of stem cell transplant. It is not yet known whether an Internet-based program is more effective with or without telephone-based problem-solving training. PURPOSE: This randomized clinical trial is studying how well an Internet-based program works with or without telephone-based problem-solving training in helping long-term survivors of hematopoietic stem cell transplant cope with late complications
RATIONALE: Ondansetron may help lessen or prevent nausea and vomiting in patients undergoing stem cell transplant. PURPOSE: This phase II trial is studying how well ondansetron works in preventing nausea and vomiting in patients undergoing stem cell transplant.
This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab, ifosfamide, carboplatin, and etoposide and to see how well they work in treating patients with relapsed or refractory lymphoma or previously untreated T-cell non-Hodgkin lymphoma or mantle cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells