Treatment Trials

23 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies
Description

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Myeloid Leukemia in RemissionAdult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPhiladelphia Chromosome Negative Chronic Myelogenous LeukemiaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage III Multiple MyelomaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia
Description

This phase II trial is studying how well giving 3-AP together with fludarabine works in treating patients with myeloproliferative disorders (MPD), chronic myelomonocytic leukemia (CMML), or accelerated phase or blastic phase chronic myelogenous leukemia. Drugs used in chemotherapy, such as 3-AP and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help fludarabine work better by making cancer cells more sensitive to the drug. 3-AP and fludarabine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 3-AP together with fludarabine may kill more cancer cells.

COMPLETED
Vorinostat and Decitabine in Treating Patients With Relapsed, Refractory, or Poor-Prognosis Hematologic Cancer or Other Diseases
Description

This phase I trial is studying the side effects and best dose of vorinostat and decitabine in treating patients with relapsed, refractory, or poor-prognosis hematologic cancer or other diseases. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells

COMPLETED
Laboratory-Treated Donor Bone Marrow in Treating Patients Who Are Undergoing a Donor Bone Marrow Transplant for Hematologic Cancer
Description

RATIONALE: Giving chemotherapy and total-body irradiation before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When certain stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. PURPOSE: This randomized phase III trial is studying donor bone marrow that is treated in the laboratory using two different devices to compare how well they work in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.

COMPLETED
Decitabine and FR901228 in Treating Patients With Relapsed or Refractory Leukemia, Myelodysplastic Syndromes, or Myeloproliferative Disorders
Description

This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.

COMPLETED
Ultraviolet-B Light Therapy and Allogeneic Stem Cell Transplantation in Treating Patients With Hematologic Malignancies
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor are rejected by the body's normal cells. Ultraviolet-B light therapy given before and after allogeneic stem cell transplantation may help prevent this from happening. PURPOSE: Clinical trial to study the effectiveness of combining ultraviolet-B light therapy with allogeneic stem cell transplantation in treating patients who have hematologic malignancies.

COMPLETED
Bone Marrow Transplantation Plus Biological Therapy in Treating Patients With Chronic Myeloid Leukemia
Description

RATIONALE: Biological therapy may increase the number of immune cells found in bone marrow and may help a person's immune system recover from the side effects of the chemotherapy used in treating chronic myeloid leukemia. Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy. PURPOSE: Phase II trial to study the effectiveness of bone marrow transplantation, chemotherapy, and biological therapy in treating patients who have chronic myeloid leukemia.

Conditions
UNKNOWN
Combination Chemotherapy Followed by Donor Bone Marrow Transplant or Peripheral Stem Cell Transplant in Treating Patients With Hematologic Cancer or Genetic Disorders
Description

RATIONALE: Giving chemotherapy drugs, such as fludarabine and melphalan, before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the patient's immune system from rejecting the donor's stem cells and helps stop the growth of cancer or abnormal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This phase II trial is studying how well giving combination chemotherapy followed by donor bone marrow transplant or peripheral stem cell transplant works in treating patients with hematologic cancer or genetic disorders.

TERMINATED
Blood Stem Cell Transplant in Treating Patients With Hematologic Cancer
Description

RATIONALE: Giving chemotherapy drugs and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This phase II trial is studying the effectiveness of donor peripheral blood stem cell transplant in treating patients with hematologic cancer.

COMPLETED
STI571 in Treating Patients With Chronic Myelogenous Leukemia in Blast Crisis
Description

RATIONALE: STI571 may interfere with the growth of cancer cells and may be an effective treatment for leukemia. PURPOSE: Phase II trial to study the effectiveness of STI571 in treating patients who have chronic myelogenous leukemia in blast crisis.

Conditions
COMPLETED
STI571 in Treating Patients With Chronic Myelogenous Leukemia That Has Not Responded to Interferon Alfa
Description

RATIONALE: STI571 may interfere with the growth of cancer cells and may be effective treatment for chronic myelogenous leukemia. PURPOSE: Phase II trial to study the effectiveness of STI571 in treating patients who have chronic myeloid leukemia that has not responded to interferon alfa.

Conditions
COMPLETED
STI571 in Treating Patients With Accelerated Phase Chronic Myelogenous Leukemia
Description

RATIONALE: STI571 may interfere with the growth of cancer cells and may be effective treatment for chronic myelogenous leukemia. PURPOSE: Phase II trial to study the effectiveness of STI571 in treating patients who have accelerated phase chronic myelogenous leukemia.

Conditions
COMPLETED
Chemotherapy, Radiation Therapy, and Peripheral Stem Cell Transplantation in Treating Patients With Hematologic Cancer
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Transplanting donated cells that have been treated with psoralen may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of chemotherapy, radiation therapy, and psoralen-treated donor cells in treating patients who are undergoing peripheral stem cell transplantation for hematologic cancer.

COMPLETED
Chemotherapy and Peripheral Stem Cell Transplantation Followed by Immunotherapy in Treating Patients With Chronic Myelogenous Leukemia
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with a peripheral stem cell transplant and immunotherapy may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: This phase II trial is studying giving chemotherapy together with a peripheral stem cell transplant followed by immunotherapy to see how well it works in treating patients with chronic phase chronic myelogenous leukemia.

Conditions
TERMINATED
Interferon Alfa Plus Sargramostim in Treating Patients With Newly Diagnosed Chronic Phase Chronic Myelogenous Leukemia
Description

RATIONALE: Interferon alfa may interfere with the growth of cancer cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of therapy. Combining sargramostim with interferon alfa may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of sargramostim in treating patients who are receiving interferon alfa for chronic phase chronic myelogenous leukemia that is in remission.

Conditions
COMPLETED
Prevention of Graft-Versus-Host Disease in Patients Undergoing Bone Marrow Transplantation
Description

RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Stem cells that have been treated in the laboratory to remove lymphocytes may prevent this from happening. PURPOSE: Clinical trial to prevent graft-versus-host disease in patients undergoing bone marrow transplantation.

Conditions
TERMINATED
Sargramostim Following Allogeneic Bone Marrow Transplantation in Treating Patients With Chronic Myelogenous Leukemia
Description

RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with allogeneic bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood, and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase II trial to study the effectiveness of allogeneic bone marrow transplantation followed by sargramostim in treating patients who have chronic myelogenous leukemia.

Conditions
TERMINATED
ABL001 for the Treatment of Chronic Myeloid Leukemia in Patients Who Are on Therapy With Tyrosine Kinase Inhibitor
Description

This phase II trial studies how well ABL001 works in treating patients with chronic myeloid leukemia who are on therapy with tyrosine kinase inhibitor. ABL001 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ABL001 and tyrosine kinase inhibitor together may work better than tyrosine kinase inhibitor alone in treating patients with chronic myeloid leukemia.

COMPLETED
Sorafenib in Treating Young Patients With Relapsed or Refractory Solid Tumors or Leukemia
Description

This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.

COMPLETED
Belinostat and Azacitidine in Treating Patients With Advanced Hematologic Cancers or Other Diseases
Description

This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.

COMPLETED
Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders
Description

This phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.

COMPLETED
A Phase 1 Dose Escalation Study of TAK-901 in Subjects With Advanced Hematologic Malignancies
Description

The purpose of this study is to determine the maximum tolerated dose (MTD) of TAK-901 in subjects with advanced hematological malignancies, and to further assess the safety and tolerability of TAK-901 at or below the MTD in an expanded cohort of subjects in order to select a dose for future studies.

COMPLETED
Early Administration of ATG Followed by Cyclophosphamide, Busulfan and Fludarabine Before a Donor Stem Cell Transplant in Patients With Hematological Cancer
Description

RATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant and tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with cyclophosphamide, busulfan, and fludarabine works in treating patients with hematological cancer or kidney cancer undergoing donor stem cell transplant.