15 Clinical Trials for Various Conditions
The goal of the current study is to determine whether Foundation Medicine's next generation sequencing assay, called FoundationOne, will provide information that allows physicians to make treatment decisions using targeted therapies in clinical trials or FDA approved therapies, including "off-label" agents, that result in superior OS compared to historical outcomes for standard CUP therapy.
This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may be safe and tolerable in treating patients with advanced solid tumors.
This phase II trial studies how well combination chemotherapy works in treating patients with pancreatic cancer before undergoing surgery. Drugs used in chemotherapy, such as irinotecan hydrochloride, oxaliplatin, leucovorin calcium, and fluorouracil (FOLFIRINOX), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This phase II trial is studying how well trastuzumab works in treating patients with metastatic or recurrent salivary gland cancer. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them
RATIONALE: Doxepin hydrochloride may be an effective treatment for oral mucositis pain in patients undergoing radiation therapy with or without chemotherapy. PURPOSE: This randomized phase III trial is studying doxepin hydrochloride to see how well it works compared to placebo in treating oral mucositis pain in patients with head and neck cancer undergoing radiation therapy with or without chemotherapy.
RATIONALE: Stereotactic radiosurgery may be able to send x-rays directly to the tumor and cause less damage to normal tissue. PURPOSE: This phase I trial is studying the side effects of stereotactic radiosurgery in treating patients with locally advanced or recurrent head and neck cancer.
The goal of this clinical research study is to find out how effective oxaliplatin and capecitabine are against advanced cancer of the salivary gland. The safety of this treatment as well as how long the cancer responds or stays in a stable state due to the treatment will also be studied.
RATIONALE: Monoclonal antibodies, such as trastuzumab, can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase II trial to study the effectiveness of trastuzumab in treating patients who have advanced salivary gland cancer.
The purpose of this study is to see how patients with incurable salivary gland cancer, who have not had chemotherapy before, respond to Gemcitabine. The investigators are trying to find out what effects (good and bad) Gemcitabine has on participants and salivary gland cancer. Gemcitabine has been shown to be an effective chemotherapy agent in other types of cancer, including; bladder cancer, breast cancer, certain types of lung cancer, ovarian cancer, and pancreas cancer. Gemcitabine has yet to be studied for efficacy in subjects with salivary gland cancer and in general other chemotherapy drugs have shown to be ineffective so far in this population.
The PIONEER Initiative stands for Precision Insights On N-of-1 Ex vivo Effectiveness Research. The PIONEER Initiative is designed to provide access to functional precision medicine to any cancer patient with any tumor at any medical facility. Tumor tissue is saved at time of biopsy or surgery in multiple formats, including fresh and cryopreserved as a living biospecimen. SpeciCare assists with access to clinical records in order to provide information back to the patient and the patient's clinical care team. The biospecimen tumor tissue is stored in a bio-storage facility and can be shipped anywhere the patient and the clinical team require for further testing. Additionally, the cryopreservation of the biospecimen allows for decisions about testing to be made at a later date. It also facilitates participation in clinical trials. The ability to return research information from this repository back to the patient is the primary end point of the study. The secondary end point is the subjective assessment by the patient and his or her physician as to the potential benefit that this additional information provides over standard of care. Overall the goal of PIONEER is to enable best in class functional precision testing of a patient's tumor tissue to help guide optimal therapy (to date this type of analysis includes organoid drug screening approaches in addition to traditional genomic profiling).
RATIONALE: Diagnostic procedures, such as specialized types of magnetic resonance imaging (MRI), may help in planning radiation therapy that does less damage to normal tissues. PURPOSE: This phase I trial is studying using functional MRI to see how well it works in planning radiation therapy in patients undergoing radiation therapy to the base of the skull and/or brain for nonmetastatic head and neck cancer.
RATIONALE: Measuring levels of transforming growth factor-beta (TGF-beta) in the blood of patients with epithelial cancers (head and neck, lung, breast, colorectal, and prostate) may help doctors predict how patients will respond to treatment with radiation therapy. PURPOSE: This research study is measuring levels of TGF-beta in patients with epithelial cancers who are undergoing radiation therapy.
RATIONALE: Early physical therapy may be effective in improving range of motion of the neck and shoulders in head and neck cancer survivors who are undergoing chemotherapy and radiation therapy. PURPOSE: This phase I trial is studying how well early physical therapy works in improving physical and functional well-being in head and neck cancer survivors receiving chemoradiotherapy.
RATIONALE: Developing a questionnaire that can be used to assess the quality of life among people who have a family member with cancer may help the study of cancer in the future. PURPOSE: This clinical trial is studying quality of life among families with a member who is a cancer patient.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.