40 Clinical Trials for Various Conditions
The goal of the current study is to determine whether Foundation Medicine's next generation sequencing assay, called FoundationOne, will provide information that allows physicians to make treatment decisions using targeted therapies in clinical trials or FDA approved therapies, including "off-label" agents, that result in superior OS compared to historical outcomes for standard CUP therapy.
This phase II trial studies how well docetaxel, cisplatin and fluorouracil work in treating patients with previously untreated stage II-IV nasal cavity and/or paranasal sinus cancer. Drugs used in chemotherapy, such as docetaxel, cisplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial is studying how well trastuzumab works in treating patients with metastatic or recurrent salivary gland cancer. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them
Head and neck squamous cell carcinoma (HNSCC) is the most common cancer arising in the upper aerodigestive tract, and is the sixth leading incident cancer worldwide. Despite advances in multimodality therapy, 5-year overall survival (OS) is 40-60%, and has increased only incrementally in the past two decades. The current standard of care for primary nonsurgical management of locally advanced HNSCC is concurrent cisplatin-radiotheray, which significantly improved OS, progression-free survival, and locoregional control compared with radiotherapy alone in the landmark Intergroup trial 0126. The MET proto-oncogene encodes c-Met, a heterodimeric growth factor receptor bound exclusively by its ligand, hepatocyte growth factor (HGF). In the laboratory, activation of the HGF/c-Met pathway is associated with resistance to cisplatin and radiotherapy in HNSCC. We hypothesize that the addition of an HGF/c-Met pathway inhibitor to cisplatin-radiotherapy may improve outcomes in HNSCC. Ficlatuzumab (AV-299) is a humanized HGF-inhibitory IgG1 monoclonal antibody. The primary objective of this study is to establish the recommended phase II dose (RP2D) of the combination of ficlatuzumab, cisplatin and intensity-modulated radiotherapy (IMRT), in patients with locally advanced HNSCC. The dose-finding study design will follow a Narayana k-in-a-row design with k set to 3 to target a 33% DLT rate. In the dose-finding phase, a total of either 10 or 14 patients will be treated. If no DLTs are observed among 10 patients, the highest dose tier will be declared the RP2D. Otherwise the RP2D will be estimated from DLTs across all dose levels by isotonic regression. The secondary objective is to estimate biomarker association with preliminary clinical response. We will evaluate biomarkers of HGF/cMet pathway activation in tumor tissue, plasma, and immune cells.
RATIONALE: Doxepin hydrochloride may be an effective treatment for oral mucositis pain in patients undergoing radiation therapy with or without chemotherapy. PURPOSE: This randomized phase III trial is studying doxepin hydrochloride to see how well it works compared to placebo in treating oral mucositis pain in patients with head and neck cancer undergoing radiation therapy with or without chemotherapy.
RATIONALE: Stereotactic radiosurgery may be able to send x-rays directly to the tumor and cause less damage to normal tissue. PURPOSE: This phase I trial is studying the side effects of stereotactic radiosurgery in treating patients with locally advanced or recurrent head and neck cancer.
The goal of this clinical research study is to find out how effective oxaliplatin and capecitabine are against advanced cancer of the salivary gland. The safety of this treatment as well as how long the cancer responds or stays in a stable state due to the treatment will also be studied.
RATIONALE: Monoclonal antibodies, such as trastuzumab, can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase II trial to study the effectiveness of trastuzumab in treating patients who have advanced salivary gland cancer.
The purpose of this study is to see how patients with incurable salivary gland cancer, who have not had chemotherapy before, respond to Gemcitabine. The investigators are trying to find out what effects (good and bad) Gemcitabine has on participants and salivary gland cancer. Gemcitabine has been shown to be an effective chemotherapy agent in other types of cancer, including; bladder cancer, breast cancer, certain types of lung cancer, ovarian cancer, and pancreas cancer. Gemcitabine has yet to be studied for efficacy in subjects with salivary gland cancer and in general other chemotherapy drugs have shown to be ineffective so far in this population.
The purpose of this study is to determine: 1. The highest dose of the trial intervention that targets neuroendocrine tumors and is tolerated by patients. 2. The highest frequency of dosing of the trial intervention that targets neuroendocrine tumors and is tolerated by patients. 3. The highest dose and frequency of dosing of the trial intervention that targets neuroendocrine tumors with at least the same degree of effectiveness and tolerability as currently available (standard of care) treatments for patients with neuroendocrine tumors.
This is an open-label, multicenter, phase 2 study of lurbinectedin monotherapy in participants with advanced (metastatic and/or unresectable) solid tumors.
PRECISION-NEC is a single-center, open-label, pilot feasibility study of molecularly defined subtypes of metastatic high-grade neuroendocrine carcinoma (HG-NEC). The hypothesis is that HG-NEC (excluding small cell carcinoma) can be segregated based on mutational analysis and that next generation sequencing (NGS)-based assignment of therapy is feasible and will potentially improve the outcomes.
Radioactive iodine therapy is often part of the standard treatment for Papillary Thyroid Carcinoma (PTC) patients. However, in many patients, tumors develop a resistance or no longer respond to radioactive iodine therapy (iodine-refractory). Several lines of evidence suggest that blocking the BRAF gene may help to re-sensitize the tumors to radioactive iodine. BRAF is a protein that plays a central role in the growth and survival of cancer cells in some types of PTC. The investigational drug GSK2118436 may work by blocking the BRAF protein in cancer cells lines and tumors that have a mutated BRAF gene. In this research study, the investigators are looking to see if GSK2118436 can re-sensitize iodine-refractory PTC to radioactive iodine therapy. The investigators are also looking at the safety of adding GSK2118436 to radioactive iodine therapy.
This study aimed to investigate the efficacy and safety of PDR001 in patients with advanced or metastatic, well-differentiated, non-functional neuroendocrine tumors of pancreatic, gastrointestinal (GI), or thoracic origin or poorly-differentiated gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) that progressed on prior treatment.
This phase II trial studies how well cabozantinib-s-malate works in treating patients with thyroid cancer that does not respond to treatment. Cabozantinib-s-malate may stop the growth of thyroid cancer by blocking some of the enzymes needed for cell growth. Cabozantinib-s-malate may also stop the growth of thyroid cancer by blocking blood flow to the tumor.
This phase II trial tests how well XL092 works for the treatment of patients with differentiated thyroid cancer that has not responded to previous treatment with radioiodine (radioiodine refractory) and that has spread to nearby tissue or lymph nodes (locally advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). XL092 is in a class of medications called tyrosine kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply, which may help keep cancer cells from growing.
This phase II trial studies the effect of selpercatinib given before surgery in treating patients with thyroid cancer whose tumors have RET alterations (changes in the genetic material \[deoxyribonucleic acid (DNA)\]). Selpercatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving selpercatinib before surgery may help shrink the tumors and help control the disease.
The purpose of this study is to find out whether a drug called PDR001, combined with either trametinib or dabrafenib, is a safe and effective treatment for thyroid cancer.
This phase II trial studies how well lenvatinib and pembrolizumab work in treating patients with anaplastic thyroid cancer that is stage IVB and has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable), or stage IVC that has spread to other places in the body (metastatic). Lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Given lenvatinib and pembrolizumab may work better than giving either one alone in treating stage IVB or C anaplastic thyroid cancer.
This phase II trial studies how well cabozantinib, nivolumab, and ipilimumab work in treating patients with differentiated thyroid cancer that does not respond to radioactive iodine and that worsened after treatment with a drug targeting the vascular endothelial growth factor receptor (VEGFR), a protein needed to form blood vessels. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab and ipilimumab may work better than the usual approach consisting of chemotherapy with drugs such as doxorubicin, sorafenib, and lenvatinib for this type of thyroid cancer.
Participants will have been diagnosed with advanced progressive thyroid cancer and are about to start treatment with a tyrosine kinase inhibitor (TKI). The purpose of this study is to evaluate the efficacy and tolerability of tyrosine kinase inhibitor therapy (Lenvatinib or Sorafenib for differentiated thyroid cancer \[which includes papillary thyroid cancer, follicular thyroid cancer, and poorly differentiated thyroid cancer\]; and Cabozantinib or Vandetanib for medullary thyroid cancer) through adaptive (intermittent) versus conventional (continuous) regimen.
This phase II trial studies how well autologous tumor infiltrating lymphocytes LN-145 (LN-145) or LN-145-S1 works in treating patients with ovarian cancer, triple negative breast cancer (TNBC), anaplastic thyroid cancer, osteosarcoma, or other bone and soft tissue sarcomas that do not respond to treatment (refractory) or that has come back (relapsed). LN-145 is made by collecting and growing specialized white blood cells (called T-cells) that are collected from the patient's tumor. LN-145-S1 is made using a modified process that chooses a specific portion of the T-cells. The T cells may specifically recognize, target, and kill the tumor cells.
This phase II trial studies how well atezolizumab in combination with chemotherapy works in treating patients with anaplastic or poorly differentiated thyroid cancer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vemurafenib and cobimetinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of cancer cells to grow and spread. Drugs such as nab-paclitaxel and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial is being done to see if atezolizumab in combination with chemotherapy works better in treating patients with anaplastic or poorly differentiated thyroid cancer compared to standard treatments.
This phase II trial studies how well pembrolizumab and lenvatinib work in treating patients with differentiated thyroid cancer that has spread to other places in the body or has come back and cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase II trial studies how well iodine I-131 works with or without selumetinib in treating patients with thyroid cancer that has returned (recurrent) or has spread from where it started to other places in the body (metastatic). Many thyroid cancers absorb iodine. Due to this, doctors often give radioactive iodine (iodine I-131) alone to treat thyroid cancer as part of standard practice. It is thought that the more thyroid tumors are able to absorb radioactive iodine, the more likely it is that the radioactive iodine will cause those tumors to shrink. Selumetinib may help radioactive iodine work better in patients whose tumors still absorb radioactive iodine. It is not yet known whether iodine I-131 is more effective with or without selumetinib in treating thyroid cancer.
This phase II trial studies how well trametinib works in increasing tumoral iodine incorporation in patients with thyroid cancer that has come back or spread to another place in the body. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and may help make treatment with iodine I-131 more effective.
This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may be safe and tolerable in treating patients with advanced solid tumors.
This phase II trial studies how well the combination of XL184 (cabozantinib), nivolumab, and ipilimumab work in treating patients with poorly differentiated neuroendocrine tumors (i.e., neuroendocrine tumor that does not look like the normal tissue it arose from). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab and ipilimumab may shrink the cancer.
Evaluate the efficacy of Selinexor in patients with poorly differentiated lung and gastrointestinal and pancreatic neuroendocrine tumors.
Phase II, non-randomized, open-label study to determine the efficacy of cabozantinib as a firstline treatment for patients with differentiated thyroid cancer (DTC). Subjects will receive drug at a starting dose of 60mg PO QD. Subjects can receive drug as long as they continue to derive clinical benefit or until they experience unacceptable drug-related toxicity.