76 Clinical Trials for Various Conditions
This phase Ib trial tests the safety and effectiveness of epcoritamab in treating patients with post-transplant lymphoproliferative disorder (PTLD) that has come back after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Epcoritamab, a bispecific antibody, binds to a protein called CD3, which is found on T cells (a type of white blood cell). It also binds to a protein called CD20, which is found on B cells (another type of white blood cell) and some lymphoma cells. This may help the immune system kill cancer cells. Giving epcoritamab may be safe and effective in treating patients with relapsed or refractory B-cell PTLD.
This study will test polatuzumab vedotin in combination with rituximab in patients with treatment-naïve CD20-positive post-transplant lymphoproliferative disorder (PTLD) based on the established efficacy of polatuzumab vedotin in B-cell lymphomas and the inadequate response rate of PTLD to single-agent rituximab. The hypothesis is that this combination therapy will be safe, well-tolerated, and effective. If so, patients with PTLD will be able to be spared the toxicity of anthracycline-based chemotherapy. Additionally, the role of the tumor microenvironment and the role of anellovirus, a non-human pathogen virus, will be explored as prognostic markers in PTLD.
This phase II trial tests how well tafasitamab and rituximab work for front-line treatment of patients with post-transplant lymphoproliferative disorder. Post-transplant lymphoproliferative disorder (PTLD) is the name for types of lymphoma that sometimes develop in people who have had a transplant. It can affect people who are taking medicines to suppress their immune system. Tafasitamab injection is in a class of medications called monoclonal antibodies. It works by helping the body to slow or stop the growth of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving the combination of tafasitamab and rituximab may work better in treating patients with post-transplant lymphoproliferative disorder.
The purpose of this study is to evaluate how effective rituximab and acalabrutinib are when given as a combination treatment for newly diagnosed B cell post transplant lymphoproliferative disorder (PTLD). Currently there is no approved therapy for PTLD. Rituximab alone is commonly used and works in some cases, but not others. In addition, participants with PTLD have trouble tolerating therapies with large amounts of side effects due to their health conditions and medications for their transplant. Due to these reasons the study team is looking for a new treatment with novel targeted agents in order to improve outcomes and to minimize toxicity. Based on emerging data of clinical efficacy of acalabrutinib in B cell malignancies and an unmet need for novel therapies in PTLD, this study will investigate the use of rituximab and acalabrutinib in participants with newly diagnosed B cell PTLD.
The purpose of this study is to determine the clinical benefit and characterize the safety profile of tabelecleucel for the treatment of Epstein-Barr virus-associated post-transplant lymphoproliferative disease (EBV+ PTLD) in the setting of (1) solid organ transplant (SOT) after failure of rituximab (SOT-R) and rituximab plus chemotherapy (SOT-R+C) or (2) allogeneic hematopoietic cell transplant (HCT) after failure of rituximab.
This pilot phase II trial studies how well rituximab and latent membrane protein (LMP)-specific T-cells work in treating pediatric solid organ recipients with Epstein-Barr virus-positive, cluster of differentiation (CD)20-positive post-transplant lymphoproliferative disorder. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. LMP-specific T-cells are special immune system cells trained to recognize proteins found on post-transplant lymphoproliferative disorder tumor cells if they are infected with Epstein-Barr virus. Giving rituximab and LMP-specific T-cells may work better in treating pediatric organ recipients with post-transplant lymphoproliferative disorder than rituximab alone.
Solid organ transplantation is an important therapeutic option for children with a variety of end stage diseases. However, the same immunosuppressive medications that are required to prevent the child's immune system from attacking and rejecting the transplanted organ can predispose these individuals to developing a very serious cancer that is linked to Epstein-Barr virus (EBV).
RATIONALE: Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Monoclonal antibodies, such as rituximab, can block cancer cell growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving bortezomib together with rituximab may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving bortezomib together with rituximab works in treating patients with post-transplant lymphoproliferative disorders.
Phase I/II trial to study the effectiveness of combining yttrium Y 90 ibritumomab tiuxetan with rituximab in treating patients who have localized or recurrent lymphoproliferative disorder after an organ transplant. Monoclonal antibodies such as yttrium Y 90 ibritumomab tiuxetan and rituximab can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells
Despite advances in medical and gene therapy, orthotopic liver transplantation remains the only definitive therapeutic option for children with end-stage liver disease. Recent advances in pre-, intra-, and early post-transplant care have resulted in a dramatic improvement in survival of the pediatric liver transplant patient. The broad long-range goal of our research program is directed at enhancing the patient's long-term survival. Our primary focus relates to obligate life-long immunosuppression, with its inherent complications including severe infection and development of cancer. These two complications come together in a single disease, Epstein-Barr Virus (EBV)- associated post-transplant lymphoproliferative disorder (PTLD). EBV, a latent human lymphotrophic herpes virus infects and immortalizes B cells. Primary infection usually occurs via salivary exchange and results in a mild, self-limited illness followed by life-long EBV-specific T cell controlled EBV latency. T cell-based immunosuppression prevents allograft rejection, however, it also suppresses cytotoxic T lymphocyte (CTL) function, generating an environment in which EBV-infected cells can proliferate. Patients receiving life-long T cell-based immunosuppression have an increased risk of developing PTLD due to their inability to produce normal immunoregulatory responses. This disease is particularly devastating to the pediatric patient as its incidence is at least 4-fold greater than in the adult liver transplant patient population. In fact, PTLD is the number one cause of death following pediatric liver transplantation. At this time, there is no definitive method of prospectively detecting, diagnosing, or treating PTLD, and current treatment protocols place the liver allograft and patient at risk. Therefore, a diagnostic tool that is both sensitive and specific, and a treatment strategy with low toxicity are greatly needed to decrease the morbidity and mortality suffered by the pediatric liver transplant patient with PTLD. Our proposed studies will support our hypothesis that the combination of a persistently elevated EBV load in the setting of a diminished immune response to EBV will be an early risk indicator associated with PTLD development, and that pre-emptive treatment utilizing autologous adoptive EBV-specific CTL immunotherapy will provide a low toxicity treatment option.
The purpose of this study is to find out if there is a benefit to giving rituximab with etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin (R-EPOCH) in participants who have high-risk B-cell PTLD in their 2nd phase of treatment (consolidation) while those with low-risk disease will be spared of chemotherapy and treated with rituximab consolidation alone. This study is also being done to find out about the usefulness of circulating tumor DNA (ctDNA), a novel blood test which, has been shown to help guide treatment decisions in other types of lymphoma. The goal is to answer the question if ctDNA is a viable and informative tool in treating PTLD with the hope that in the future it may be used to individualize study treatment for participants with PTLD in a way that limits study treatment toxicity without losing the effectiveness of the treatment plan.
This phase II trial tests whether loncastuximab tesirine works to shrink tumors in patients with B-cell malignancies that have come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, called loncastuximab, linked to a chemotherapy drug, called tesirine. Loncastuximab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them.
This phase II trial studies the side effects and how well high-dose yttrium-90 (Y-90)-ibritumomab tiuxetan (anti-cluster of differentiation \[CD\]20) followed by fludarabine phosphate, low-dose total body irradiation (TBI), and donor peripheral blood stem cell transplant (PBSCT) work in treating patients with aggressive B-cell lymphoma that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Radiolabeled monoclonal antibodies, such as Y-90-ibritumomab tiuxetan, can find cancer cells and carry cancer-killing substances to them with less effect on normal cells. Giving chemotherapy, such as fludarabine phosphate, and TBI before a donor PBSCT helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. However, high-dose radiolabeled antibodies also destroy healthy blood cells in the patient's body. When healthy stem cells from a donor are infused into the patient (stem cell transplant), they may help the patient's body replace these blood cells. Giving high-dose Y-90-ibritumomab tiuxetan followed by fludarabine phosphate, TBI, and donor PBSCT may be an effective treatment for patients with B-cell lymphoma.
Post transplant lymphoproliferative disease (PTLD) is a type of B-cell non-Hodgkin lymphoma that occurs in patients with weakened immune systems due to immunosuppressive medications taken after organ or stem cell transplantation. This is usually related to a virus called Epstein-Barr (EPV). Rituximab is a type of drug called an "antibody" that specifically destroys both normal and cancerous B-cells, and is commonly used for PTLD. Bortezomib is a drug that has been approved by the Food and Drug Administration (FDA) to treat multiple myeloma and a B-cell non-Hodgkin lymphoma called Mantle Cell Lymphoma, and shows significant activity in lymphoma cells caused by EBV. In this research study, we hope to learn if the addition of bortezomib to rituximab treatment can increase the rate of complete remissions and cures of PTLD after organ or stem cell transplant.
This phase II trial tests how well the combination of epcoritamab and lenalidomide work in treating patients with immunodeficiency-related large B-cell lymphoma that does not respond to treatment (refractory) or that has come back after a period of improvement (relapsed). Epcoritamab is an immunotherapy that engages T-cells in the immune system to help redirect their killing effects against lymphoma cells. Lenalidomide can modulate the immune system to enhance killing effects of lymphoma by the immune system as well. Giving patients a combination of epcoritamab and lenalidomide may work better in treating refractory or relapsed immunodeficiency-related large B-cell lymphoma.
The purpose of this study is to assess the efficacy and safety of tabelecleucel in participants with Epstein-Barr virus (EBV) associated diseases.
The TEAMMATE Trial will enroll 210 pediatric heart transplant patients from 25 centers at 6 months post-transplant and follow each patient for 2.5 years. Half of the participants will receive everolimus and low-dose tacrolimus and the other half will receive tacrolimus and mycophenolate mofetil. The trial will determine which treatment is better at reducing the cumulative risk of coronary artery vasculopathy, chronic kidney disease and biopsy proven-acute cellular rejection without an increase in graft loss due to all causes (e.g. infection, PTLD, antibody mediated rejection).
To investigate the efficacy of autologous Epstein-barr virus (EBV)-specific T cells for the treatment of EBV positive Diffuse Large B Cell Lymphoma (DLBCL), Hodgkin Lymphoma (HL) and Post-transplant Lymphoproliferative Disease (PTLD) after failing first line treatment.
This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.
This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
By combining a variety of agents that potentiate Zidovudine (ZDV), the investigators hope to induce remission in this generally fatal disease. Most therapies for aggressive B cell lymphomas are based upon intensive chemotherapeutic regimens, expensive modalities (bone marrow transplant, Rituximab), or experimental approaches (gene therapy, cytotoxic T cell infusion) that are difficult to implement in heavily pre-treated patients. Therapy for relapsed aggressive B cell lymphomas is very poor. Even curable lymphomas such as Burkitt Lymphoma (BL) and Hodgkin lymphoma are extremely difficult to treat in relapse and/or after stem cell transplant failure. The investigators propose a novel therapeutic approach that exploits the presence of Epstein-Barr virus (EBV) in lymphomas; antiviral mediated suppression of NF-kB and disruption of viral latency.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)
The purpose of this study is to evaluate how safe and effective the combination of two different drugs (brentuximab vedotin and rituximab) is in patients with certain types of lymphoma. This study is for patients who have a type of lymphoma that expresses a tumor marker called CD30 and/or a type that is associated with the Epstein-Barr virus (EBV-related lymphoma) and who have not yet received any treatment for their cancer, except for dose-reduction or discontinuation (stoppage) of medications used to prevent rejection of transplanted organs (for those patients who have undergone transplantation). This study is investigating the combination of brentuximab vedotin and rituximab as a first treatment for lymphoma patients
This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.
The subject is invited to take part in this research study because s/he has been diagnosed with Diffuse Large B-Cell Lymphoma (DLBCL), Primary Mediastinal B-cell Lymphoma (PMBCL), or Post-transplant Lymphoproliferative Disorder (PTLD). In an attempt to improve cure rates while reducing harmful effects from drugs, oncologists are developing new treatment protocols. One such protocol, entitled dose-adjusted EPOCH-R, utilizes two major new strategies. First, the treatment approach utilizes continuous infusion of chemotherapy over four days, instead of being administered over minutes or hours. Secondly, the doses of some medications involved are increased or decreased based on how the drugs affect the subject's ability to produce blood cells, which is used as a measure of how rapidly the body is processing drugs. Using this approach in adults, researchers have shown improved cure rates in these cancers. Additionally, the harmful effects experienced by patients has been mild, with mucositis, severe infections, and tumor lysis syndrome occurring rarely. However, this new dosing method has never been used in children, and the effectiveness and side effects of this new method are unknown in children. The purpose of this study is to look at the safety of dose-adjusted EPOCH-R in the treatment of children with mature B-cell cancers, and to see if we can maintain cure rates (as has been shown in adults). This study represents the first trial of dose-adjusted EPOCH-R in children.
This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening