Treatment Trials

174 Clinical Trials for Various Conditions

Focus your search

RECRUITING
PLX038 in Primary Central Nervous System Tumors Containing MYC or MYCN Amplifications
Description

Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PLX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.

ACTIVE_NOT_RECRUITING
Study to Evaluate the Efficacy and Safety of Pemigatinib in Participants With Previously Treated Glioblastoma or Other Primary Central Nervous System Tumors Harboring Activating FGFR1-3 Alterations
Description

This is an open-label, monotherapy study of pemigatinib in participants with recurrent glioblastoma (GBM) or other recurrent gliomas, circumscribed astrocytic gliomas, and glioneuronal and neuronal tumors with an activating FGFR1-3 mutation or fusion/rearrangement. This study consists of 2 cohorts, Cohorts A, and B, and will enroll approximately 82 participants into each cohort. Participants will receive pemigatinib 13.5 mg QD on a 2-week on-therapy and 1-week off-therapy schedule as long as they are receiving benefit and have not met any criteria for study withdrawal.

RECRUITING
Fluorescence Detection of Adult Primary Central Nervous System Tumors With Tozuleristide and the Canvas System
Description

The purpose of this study is to examine the use of a single dose of tozuleristide (24 or 36 mg) and the Canvas imaging system during surgical resection of primary central nervous system (CNS) tumors: Primary gadolinium enhancing (high grade) CNS tumors, primary non-gadolinium enhancing CNS tumors, and primary vestibular schwannoma. The primary objectives of the study is to see how well tozuleristide and the Canvas imaging system during surgical resection will show fluorescence among primary enhancing/high grade CNS tumors; and among the tumors that demonstrate tozuleristide fluorescence, to estimate the true positive rate and true negative rate of fluorescence in tissue biopsies, as well as sensitivity and specificity of tozuleristide fluorescence for distinguishing tumor from non-tumoral tissue. The secondary objectives of the study include evaluating the safety of tozuleristide and the Canvas imaging system, and to determine if the presence of remaining fluorescence at the time of surgery corresponds to remaining tumor evident on post-operative MRI images, or if the absence of fluorescence corresponds to evidence of no gross residual tumor on post-operative magnetic resonance imaging (MRI).

RECRUITING
Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms
Description

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

COMPLETED
PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors
Description

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

RECRUITING
Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors
Description

This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas that demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4 to \<12 years (Phase I) or 12 to \</=39 years (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)

WITHDRAWN
Testing the Combination of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) in Children, Adolescent, and Young Adult Patients With Relapsed/Refractory Cancers That Have an Increased Number of Genetic Changes, The 3CI Study
Description

This phase Ib trial investigates the side effects of the combination of nivolumab and ipilimumab, and to see how well they work in treating patients with cancers that have come back (relapsed) or does not respond to treatment (refractory) and have an increased number of genetic changes. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tumor mutational burden (TMB) is the total amount of genetic changes or "mutations" found in tumor cells. Some studies in adults with cancer have shown that patients with a higher TMB (an increased number of genetic changes) are more likely to respond to immunotherapy drugs. There is also evidence that nivolumab and ipilimumab can shrink or stabilize cancer in adult patients with cancer. This study is being done to help doctors learn if the combination of nivolumab and ipilimumab can help children, adolescents, and young adults patients live longer.

COMPLETED
Memantine for the Reduction of Cognitive Impairment After Radiation Therapy in Pediatric Patients With Central Nervous System Tumors
Description

This early phase I trial studies the feasibility of giving memantine for the reduction of cognitive impairment after radiation therapy in pediatric patients with central nervous system tumors. Memantine may reduce the effects of radiation therapy on memory and thinking.

WITHDRAWN
StrataXRT in Preventing Radiation Dermatitis in Pediatric Patients Undergoing Radiation Therapy to the Brain or Spinal Cord
Description

This phase I trial studies the side effects of a silicone topical wound dressing (StrataXRT) and to see how well it works in preventing radiation dermatitis (skin burns and side effects caused by radiation) in pediatric patients undergoing radiation therapy. StrataXRT may help prevent or decrease severe skin rash, pain, itching, skin peeling, and dry skin in pediatric patients undergoing radiation therapy to the brain or spinal cord.

ACTIVE_NOT_RECRUITING
Volitinib in Treating Patients With Recurrent or Refractory Primary CNS Tumors
Description

This phase I trial studies the side effects and best dose of volitinib in treating patients with primary central nervous system (CNS) tumors that have come back (recurrent) or does not respond to treatment (refractory). Volitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Pevonedistat, Irinotecan, and Temozolomide in Treating Patients With Recurrent or Refractory Solid Tumors or Lymphoma
Description

This phase I trial studies the side effects and best dose of pevonedistat when given together with irinotecan hydrochloride and temozolomide in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma that have come back after a period of improvement (recurrent) or that do not respond to treatment (refractory). Pevonedistat and irinotecan may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pevonedistat, irinotecan hydrochloride, and temozolomide may work better in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma compared to irinotecan and temozolomide alone.

COMPLETED
Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.

COMPLETED
Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Selumetinib Sulfate in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well selumetinib sulfate works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with MAPK pathway activation mutations that have spread to other places in the body and have come back or do not respond to treatment. Selumetinib sulfate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.

ACTIVE_NOT_RECRUITING
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)
Description

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

COMPLETED
Nanoparticle Albumin-Bound Rapamycin, Temozolomide, and Irinotecan Hydrochloride in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors
Description

This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after treatment and a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may cause the cancer to stop growing or shrink for a period of time and may lessen the symptoms that are caused by the cancer.

ACTIVE_NOT_RECRUITING
Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors
Description

This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.

COMPLETED
Prexasertib in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors
Description

This phase I trial studies the side effects and best dose of prexasertib in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or does not respond to treatment. Checkpoint kinase 1 inhibitor LY2606368 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Entinostat in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors
Description

This phase I trial studies the side effects and best dose of entinostat in treating pediatric patients with solid tumors that have come back or have not responded to treatment. Entinostat may block some of the enzymes needed for cell division and it may help to kill tumor cells.

COMPLETED
Pomalidomide in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of pomalidomide in treating younger patients with tumors of the brain or spine (central nervous system) that have come back or are continuing to grow. Pomalidomide may interfere with the ability of tumor cells to grow and spread and may also stimulate the immune system to kill tumor cells.

COMPLETED
Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas
Description

This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

COMPLETED
Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients With Relapsed or Refractory Solid Tumors
Description

This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Cabozantinib S-Malate in Treating Younger Patients With Recurrent or Refractory Solid Tumors
Description

This phase I trial studies the side effects and best dose of cabozantinib S-malate in treating younger patients with solid tumors that have come back or no longer respond to treatment. Cabozantinib S-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
A Study of Oral LOXO-292 (Selpercatinib) in Pediatric Participants With Advanced Solid or Primary Central Nervous System (CNS) Tumors
Description

This is an open-label, multi-center Phase 1/2 study of oral LOXO-292 in pediatric participants with an activating rearranged during transfection (RET) alteration and an advanced solid or primary CNS tumor.

COMPLETED
A Study to Evaluate the Safety and Efficacy of Nivolumab Monotherapy and Nivolumab in Combination With Ipilimumab in Pediatric Participants With High Grade Primary Central Nervous System (CNS) Malignancies
Description

The purpose of this study is to determine the safety and effectiveness of nivolumab alone and in combination with ipilimumab in pediatric patients with high grade primary central nervous system (CNS) malignancies.