133 Clinical Trials for Various Conditions
The purpose of this study is to evaluate safety and tolerability and to determine the maximum tolerated dose (MTD) or maximum administered dose (MAD) and/or recommended dose (RD) of SGR-1505.
The purpose of this study is to determine the safety and tolerability of intravenous (IV) and subcutaneous (SC) administration of XmAb13676 and to determine the maximally tolerated dose (MTD) and/or recommended dose (RD).
The primary objective of this study is to evaluate the efficacy of a four-month dosing period of intra-lesional injection of TG1042 in patients with relapsing CBCL. Patients will receive intra-tumoral injections of an adenoviral vector construct containing the human interferon gamma gene (TG1042), in an attempt to enhance immune responses with anti-tumor activity. This local administration induces tumour cell killing at the injected tumour sites.
A study to compare pain differences between using MedJet needle-free drug-delivery system with standard of care treatment for cutaneous T-cell lymphomas and cutaneous B-cell lymphomas in participants.
This phase I trial studies the side effects and best dose of anti-inducible T-cell co-stimulator (ICOS) monoclonal antibody MEDI-570 in treating patients with peripheral T-cell lymphoma follicular variant or angioimmunoblastic T-cell lymphoma that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as anti-ICOS monoclonal antibody MEDI-570, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.
This phase II trial tests the effectiveness of golcadomide and rituximab as bridging treatment before chimeric antigen receptor (CAR) T-cell therapy in patients with aggressive B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Patients that are able to receive CAR T-cell therapy have a potential for cure, however, many will not be qualified to receive therapy due to relapse. Bridging therapy is therapy intended to transition a patient from one therapy or medication to another or maintain their health or status until they are a candidate for a therapy or have decided on a therapy. Golcadomide may help block the formation, growth or spread of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving golcadomide and rituximab as bridging therapy before CAR T-cell therapy may kill more tumor cells and may improve the chance of proceeding to CAR T-cell therapy in patients with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma.
This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.
This phase II/III trial compares the side effects and activity of oral azacitidine in combination with the standard drug therapy (reduced dose rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone \[R-miniCHOP\]) versus R-miniCHOP alone in treating patients 75 years or older with newly diagnosed diffuse large B cell lymphoma. R-miniCHOP includes a monoclonal antibody (a type of protein), called rituximab, which attaches to the lymphoma cells and may help the immune system kill these cells. R-miniCHOP also includes prednisone which is an anti-inflammatory medication and a combination of 3 chemotherapy drugs, cyclophosphamide, doxorubicin, and vincristine. These 3 chemotherapy drugs, as well as oral azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combining oral azacitidine with R-miniCHOP may shrink the cancer or extend the time without disease symptoms coming back or extend patient's survival when compared to R-miniCHOP alone.
This phase I trial tests the safety, side effects, and best dose of Q702 in treating patients with hematologic malignancies. Q702 is in a class of medications called immunomodulatory agents. It works by helping the immune system kill cancer cells and by helping the bone marrow to produce normal blood cells. Giving Q702 may be safe, tolerable and/or effective in treating patients with hematologic malignancies.
This phase II clinical trial evaluates tafasitamab and lenalidomide followed by tafasitamab and the carboplatin, etoposide and ifosfamide (ICE) regimen as salvage therapy for transplant eligible patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide may have antineoplastic activity which may help block the formation of growths that may become cancer. Drugs used in chemotherapy, such as carboplatin, etoposide and ifosfamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tafasitamab and lenalidomide followed by ICE may be a better treatment for patients with relapsed or refractory large B-cell lymphomas.
This phase II trial tests the safety, side effects, and best dose of TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab in treating patients with diffuse large B-cell lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). TTI-621 and TTI-622 are called fusion proteins. A fusion protein includes two specialized proteins that are joined together. In TTI-621 and TTI-622, one of the proteins binds with other proteins found on the surface of certain cells that are part of the immune system. The other protein targets and blocks a protein called CD47. CD47 is present on cancer cells and is used by those cells to hide from the body's immune system. By blocking CD47, TTI-621 and TTI-622 may help the immune system find and destroy cancer cells. Pembrolizumab is a monoclonal antibody directed against human cell surface receptor PD-1 (programmed death-1 or programmed cell death-1) that works by helping the body\'s immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Giving TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab may kill more cancer cells in patients with relapsed or refractory diffuse large B-cell lymphoma.
This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
This research study is collecting and storing tissue samples from patients with rare or cutaneous non-Hodgkin lymphoma. Collecting and storing samples of tissue from patients with cancer to test in the laboratory may help the study of cancer in the future.
The purpose of this study is to evaluate the anti-tumor activity of alisertib (MLN8237) in participants with relapsed or refractory non-hodgkin's lymphoma.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This randomized pilot clinical trial studies how well giving prolonged infusion compared to standard infusion of cefepime hydrochloride works in treating patients with febrile neutropenia. Giving cefepime hydrochloride over a longer period of time may be more effective than giving cefepime hydrochloride over the standard time.
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions. PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.
RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
RATIONALE: Low dose deferasirox may be safe and effective in treating patients who have undergone hematopoietic stem cell transplant and have iron overload. PURPOSE: This pilot clinical trial studies safety and tolerability of deferasirox in hematopoietic stem cell transplant recipients who have iron overload. Effect of low dose deferasirox on labile plasma iron is also examined.
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and the best dose of sunitinib malate in treating human immunodeficiency virus (HIV)-positive patients with cancer receiving antiretroviral therapy. Sunitinib malate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)