29 Clinical Trials for Various Conditions
This clinical trial studies how well yttrium-90 (Y90) glass microspheres positron emission tomography (PET)/computed tomography (CT) works in imaging patients with liver tumors . Images produced by PET/CT may provide better information about the distribution of particles, such as Y90 glass microspheres, delivered for selective internal radiation therapy (SIRT) as compared to regular medical care images useing technetium Tc-99m albumin-aggregated single photon emission computed tomography (SPECT)/CT images.
This clinical trial compares two different kinds of surgical closing techniques, short stitch suture or traditional suture, in patients who are having liver tumor surgery. This study may help researchers learn if one technique can lower the chances of developing a hole in the wall of the abdomen (an abdominal hernia) at the incision site better than the other.
This clinical trial studies contrast-enhanced magnetic resonance imaging (MRI) in detecting nonmalignant and malignant liver lesions. Diagnostic procedures, such as MRI, may help find and diagnose nonmalignant and malignant liver lesions. Contrast agents, such as gadoxetate disodium and gadobutrol, may help doctors to see MRI images more clearly.
This study will review the treatment and outcomes of patients having primary and metastatic hepatic malignancies. Patients treated with surgical resection, percutaneous radiofrequency ablation (RFA), and transarterial chemoembolization (TACE) will be compared with patients not receiving these treatments. Tumor recurrence and survival data will be compared to the published literature to determine the efficacy of current treatment strategies in this patient population.
This study will investigate the tumor-associated vasculature of patients with solid tumors. The investigators will use a technology known as intravital microscopy (IVM) in order to visualize in real-time the vessels associated with solid tumors. The IVM observations may determine if an individual patient's tumor vessels would be amenable to receiving systemic therapy, based on the functionality of the vessels.
Over the past three decades, the treatment of both primary and secondary liver malignancies has been improved by the development and optimization of multiple minimally invasive thermal ablative therapies. These advances have resulted in a myriad of benefits for patients including decreased morbidity, mortality, as well as increased longevity and quality of life. However, these therapies can only be performed within certain parameters. Thermal ablative techniques such as radiofrequency ablation (RFA) and microwave ablation (MVA) are recommended for small lesions under 3 cm due to decreased efficacy when attempting to treat larger lesions. Additionally, large vessels in close proximity to a target lesion may result in heat dissipation, termed the "heat sink" effect, and result in incomplete ablation of the lesion. Furthermore, thermal ablative techniques cause off-target damage when utilized near sensitive structures such as the diaphragm, stomach, or bowel, and if performed near thermosensitive bile ducts, can result in cholestasis . Noting these limitations, percutaneous high-dose-rate brachytherapy was brought into clinical practice by Ricke et al. in Europe in 2002 . This therapy utilizes an iridium-192 (192Ir) isotope to administer a cytotoxic dose of radiation to a target lesion. It is not susceptible to heat sink effects and can also deliver radiation with the precision necessary to cause tumor death without destroying the integrity of neighboring structures. Additionally, it can be used to treat larger tumors (\>3cm) as it is not associated the same size limitations as ablative techniques and can also be utilized to treat lesions that are not amenable to intra-arterial therapies (such as trans-arterial chemoembolization and yttrium-90 radioembolization). Since its inception, HDRBT has been evaluated through multiple studies investigating its use to treat lesions throughout the body including both primary and secondary liver malignancies such as hepatocellular carcinoma (HCC), cholangiocarcinoma, metastasis to the liver from colorectal cancer, pancreatic cancer , melanoma , and breast cancer . Its use in treating lymph node metastases has also been investigated . These studies have demonstrated the feasibility, safety, and clinical effectiveness of this method, establishing it as a therapeutic option when use of thermal ablation therapies is restricted. Most studies however, have been retrospective and have been performed outside the United States. Studying this therapy will add a crucial treatment option to our current armamentarium, filling a gap in currently available therapies and additionally allowing for further investigation of the use of HDRBT in a larger and more diverse population.
Open-label, Phase I-II, first-in-human (FIH) study for A166 monotherapy in HER2-expressing or amplified patients who progressed on or did not respond to available standard therapies. Patients must have documented HER2 expression or amplification. The patient must have exhausted available standard therapies. Patients will receive study drug as a single IV infusion. Cycles will continue until disease progression or unacceptable toxicity.
The goal of this study is to understand the immunologic effects radioembolization has on the immune system. This will be done by evaluating the changes on biopsy, peripheral blood monocytes, and cytokines.
This phase I trial tests the safety, side effects, and best dose of a new intervention, AU409, in treating patients with primary liver cancers that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or advanced solid tumors that have spread to the liver (liver metastatic disease). AU409 may stop cancer from growing and spreading. This trial may help researchers determine if AU409 is safe and effective in treating patients with liver cancers and solid tumors with liver metastatic disease.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: Using BG00001 to insert the gene for interferon-beta into a person's pleural cavity may improve the body's ability to fight cancer. PURPOSE: Phase I trial to study the effectiveness of intrapleural BG00001 in treating patients who have malignant pleural mesothelioma or malignant pleural effusions.
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells
RATIONALE: Vaccines made from a person's white blood cells that have been treated in the laboratory may make the body build an immune response to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of vaccine therapy in treating patients who have advanced or metastatic cancer.
RATIONALE: Vaccines made from a peptide may make the body build an immune response to kill tumor cells. Combining vaccine therapy with interleukin-2 and/or sargramostim may be a more effective treatment for solid tumors. PURPOSE: Phase II trial to study the effectiveness of vaccine therapy plus interleukin-2 and/or sargramostim in treating adults who have metastatic solid tumors.
RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase I trial to study the effectiveness of biological therapy in treating patients who have metastatic cancer that has not responded to previous treatment.
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.
RATIONALE: Palliative care may help patients with advanced cancer live more comfortably. PURPOSE: This randomized clinical trial is studying an early intervention palliative care program to see how well it works compared to a standard care program in improving end-of-life care in patients with advanced lung , gastrointestinal, genitourinary, or breast cancer.
RATIONALE: VEGF Trap may stop the growth of solid tumors or non-Hodgkin's lymphoma by stopping blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of intravenous VEGF Trap in treating patients with relapsed or refractory advanced solid tumors or non-Hodgkin's lymphoma.
RATIONALE: Intravenous VEGF Trap may stop the growth of solid tumors or non-Hodgkin's lymphoma by stopping blood flow to the cancer. PURPOSE: This phase I trial is studying the side effects of VEGF Trap in treating patients with relapsed or refractory advanced solid tumors or non-Hodgkin's lymphoma.
RATIONALE: PV701 may be able to kill tumor cells while leaving normal cells undamaged. PURPOSE: Phase I trial to study the effectiveness of PV701 in treating patients who have advanced or recurrent ovarian epithelial, fallopian tube, primary peritoneal, colorectal, or other cancer found primarily within the peritoneal cavity.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of oxaliplatin with or without floxuridine and leucovorin in treating patients who have metastatic cancer of the peritoneum.
Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.
This phase I trial studies the side effects and the best dose of veliparib when given together with paclitaxel and carboplatin in treating patients with solid tumors that are metastatic or cannot be removed by surgery and liver or kidney dysfunction. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib together with paclitaxel and carboplatin may kill more tumor cells.
RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of ILX-295501 in treating patients who have stage III or stage IV ovarian cancer that has not responded to previous therapy.