91 Clinical Trials for Various Conditions
The primary purpose of the study is to assess the pharmacokinetics (PK) profile of pembrolizumab following subcutaneous (SC) injection of pembrolizumab coformulated with hyaluronidase, and to evaluate the objective response rate (ORR) of pembrolizumab (+) berahyaluronidase alfa SC in adult participants with Relapsed or Refractory Classical Hodgkin Lymphoma (rrcHL) or Relapsed or Refractory Primary Mediastinal Large B-cell Lymphoma (rrPMBCL). There is no formal hypothesis to be tested for this study.
The primary objective of the study is to evaluate the objective response rate (ORR), by cohort, rrcHL and rrPMBCL, as assessed by the investigator according to Lugano classification criteria 2014 in participants treated with pembrolizumab every six weeks (Q6W).
This phase II trial studies the effect of brentuximab vedotin and nivolumab alone and in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone in treating patients with untreated, stage I-IV primary mediastinal large B-cell lymphoma. Brentuximab vedotin is a monoclonal antibody, called brentuximab, linked to a toxic agent, called vedotin. Brentuximab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD30 receptors, and delivers vedotin to kill them. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Rituximab is a type of antibody therapy, which targets and attaches to the CD20 protein found on the surface of blood cells with cancer and some healthy blood cells. Chemotherapy drugs, such as cyclophosphamide, and doxorubicin, work in different ways to stop the growth of cancer cells, either by killing the cells, or by stopping them from dividing. Prednisone is a steroid, a hormone (chemical messengers) with multiple roles, notably in the immune system and inflammation reduction. Steroids are poisonous to lymphocytes (white blood cells from which lymphomas develop). Giving brentuximab vedotin and nivolumab in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone may help to control the disease and be a less harmful regimen than standard chemotherapy in patients with primary mediastinal large B-cell lymphoma.
This phase II trial studies how well copanlisib hydrochloride and nivolumab work in treating patients with diffuse large B-cell lymphoma or primary mediastinal large B-cell lymphoma that has come back (recurrent) or does not responded to the treatment (refractory). Copanlisib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving copanlisib hydrochloride and nivolumab may work better in treating patients with diffuse large B-cell lymphoma or primary mediastinal large B-cell lymphoma compared to standard of care.
Primary mediastinal large B cell lymphoma is treated with a combination of chemotherapy and the monoclonal antibody rituximab (chemoimmunotherapy). Following chemoimmunotherapy patients receive radiation therapy if they have residues which may be active tumour. However at the end of chemoimmunotherapy the majority of patients show tissue scarring that is not necessarily active tumor. In recent years, PET/CT has proved to be a good tool to accurately identify active tumor from scar tissue in patients treated for mediastinal lymphoma.The purpose of this trial is to test whether radiation therapy is really necessary in patients where PET/CT has shown that the tumor is no longer active. Therefore we will compare radiation treatment with careful observation. Patients that at the end of conventional treatment of chemoimmunotherapy have a negative PET/CT (i.e., without residues suspected to contain active tumor), will randomly assigned to two different treatment groups: one treatment group will receive the radiation treatment, and the other treatment group will receive careful observation. The trial is planned according to a non-inferiority design aimed at demonstrating that progression free survival after the experimental treatment (observation) is not worse than after the standard comparator (mediastinal irradiation.Participation in this study could spare patients with complete remission at the end of chemo immunotherapy (PET/CT negative) radiation therapy that may be unnecessary.
This research study is evaluating the combination of drugs, pembrolizumab with chimeric antigen receptor (CAR) T-cell therapy, as a possible treatment for primary mediastinal B-cell lymphoma that has recurred after prior treatment. The names of the study drugs involved in this study are: - Pembrolizumab Standard treatment will include: * CAR T-cell therapy (either axicabtagene-ciloleucel or lisocabtagene maraleucel) * Cyclophosphamide * Fludarabine
This phase III trial compares the effects of nivolumab with chemo-immunotherapy versus chemo-immunotherapy alone in treating patients with newly diagnosed primary mediastinal B-cell lymphoma (PMBCL). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Treatment for PMBCL involves chemotherapy combined with an immunotherapy called rituximab. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving nivolumab with chemo-immunotherapy may help treat patients with PMBCL.
This is a Phase I/II multicenter single arm non-randomized open label study of the investigational drug, brentuximab vedotin, given in combination with routine chemotherapy (rituximab, cyclophosphamide, doxorubicin and prednisone) every 3 weeks for a total of 6 cycles.
This phase II trial tests the effectiveness of golcadomide and rituximab as bridging treatment before chimeric antigen receptor (CAR) T-cell therapy in patients with aggressive B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Patients that are able to receive CAR T-cell therapy have a potential for cure, however, many will not be qualified to receive therapy due to relapse. Bridging therapy is therapy intended to transition a patient from one therapy or medication to another or maintain their health or status until they are a candidate for a therapy or have decided on a therapy. Golcadomide may help block the formation, growth or spread of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving golcadomide and rituximab as bridging therapy before CAR T-cell therapy may kill more tumor cells and may improve the chance of proceeding to CAR T-cell therapy in patients with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma.
This phase II trial tests the effectiveness of odronextamab given before chimeric antigen receptor T (CAR-T) cell therapy (bridging therapy) in patients with large B-cell lymphomas that have come back after a period of improvement (relapsed) or that have not responded to previous treatment (refractory). Odronextamab is a bispecific antibody that can bind to two different antigens at the same time. Odronextamab binds to CD3, a T-cell surface antigen, and CD20 (a tumor-associated antigen that is expressed on B-cells during most stages of B-cell development and is often overexpressed in B-cell cancers) and may interfere with the ability of cancer cells to grow and spread. Bridging therapy has been used to maintain disease control and to increase the chance of successful receipt of CAR-T cell therapy. However, bridging therapy is typically given after leukapheresis, which does not help prevent disease progression between the decision for CAR-T cell therapy and leukapheresis. Giving odronextamab as bridging therapy before leukapheresis may delay disease progression to allow leukapheresis and increase the likelihood of successful CAR-T cell therapy in patients with relapsed or refractory large B-cell lymphomas.
This study evaluates immune responses after CAR-T therapy to find out if CAR-T therapy reduces the effectiveness of the vaccines (vaccine immunity) against diseases such as measles, mumps and rubella, among others in patients with multiple myeloma and non-Hodgkin lymphoma.
This research study involves assessing the impact of emapalumab as preventative management of CAR-T related cytokine release syndrome in participants with Non-Hodgkin's lymphoma (NHL). The research study involves the following study interventions: * Fludarabine and cyclophosphamide (Lymphodepleting Chemotherapy) * Axicabtagene Ciloleucel * Emapalumab
This first-in-human (FIH) trial is designed to assess the safety, feasibility and preliminary efficacy of a single intravenous (IV) dose of SynKIR-310 administered to participants with relapsed/refractory B-NHL.
This phase Ib/II trial evaluates the safety, optimal dose, and efficacy of the combination of epcoritamab and ibrutinib in treating patients with aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or responded to previous treatment (refractory). Epcoritamab, a bispecific antibody, binds to two different types of receptors (proteins present on the cell surface) at the same time. The two receptors that epcoritamab binds to are called CD3 and CD20. CD3 is found on T cells, which are important cells of the immune system that help fight cancer and infections. CD20 is found on the surface of most types of aggressive B-cell non-Hodgkin lymphoma cells. By binding to both CD3 and CD20, epcoritamab brings the two cells close together so the T cells can fight and kill the lymphoma B cells. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, binds to a protein on B cells, a type of white blood cell from which the lymphoma developed. By doing this it decreases the ability of the lymphoma B cells to survive and grow. Ibrutinib may also improve the health (or fitness) of T cells thus making epcoritamab safer and/or more effective.
This is a Phase 1/2, first-in-human, open-label, dose-escalating trial designed to assess the safety and efficacy of VNX-101 in patients with relapsed or refractory CD19-positive hematologic malignancies.
This phase II trial compares epcoritamab to standard practice (observation) for the treatment of patients with B-cell lymphomas who are not in complete remission after treatment with CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy. Epcoritamab is a bispecific antibody. It works by simultaneously attaching to a molecule called CD20 on cancerous B-cells and a molecule called CD3 on effector T-cells, which are a type of immune cell. When epcoritamab binds to CD20 and CD3, it brings the two cells together and activates the T-cells to kill the cancerous B-cells. Epcoritamab may increase a patient's chances of achieving complete remission after CD19-directed CAR-T therapy, compared to standard observation.
This phase I trial tests the safety, side effects and best dose of CC-99282 with rituximab for the treatment of patients who have received chimeric antigen receptor (CAR) T cell therapy for non-Hodgkins lymphoma and in whom have had a sub-optimal response early on to CAR T-cell therapy. Immunotherapy with CC-99282 may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving CC-99282 with rituximab may be a safe and effective treatment option for patients who have received CAR-T cell therapy for relapsed or refractory non-Hodgkin's lymphoma.
This research study involves the study of CD79b-19 CAR T cells for treating people with relapsed/refractory Non-Hodgkin Lymphoma and to understand the side effects when treated with CD79b-19 CAR T cells. This research study involves the study drugs: * CD79b-19 CAR T cells * Fludarabine and Cyclophosphamide: Standardly used chemotherapy drugs as part of lymphodepleting process
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
ACE1831 is an off-the-shelf, allogeneic gamma delta T (gdT) cell therapy derived from healthy donors, that is under investigation for the treatment of CD20-expressing B-cell malignancies. The ACE1831-001 study is an open-label, Phase I, first-in-human (FIH) study that aims to evaluate the safety and tolerability, pharmacokinetics and pharmacodynamics, and efficacy of ACE1831 in patients with CD20-expressing Non-Hodgkin lymphoma.
The purpose of this study is to evaluate safety and tolerability and to determine the maximum tolerated dose (MTD) or maximum administered dose (MAD) and/or recommended dose (RD) of SGR-1505.
This phase II trial tests the safety, side effects, and best dose of TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab in treating patients with diffuse large B-cell lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). TTI-621 and TTI-622 are called fusion proteins. A fusion protein includes two specialized proteins that are joined together. In TTI-621 and TTI-622, one of the proteins binds with other proteins found on the surface of certain cells that are part of the immune system. The other protein targets and blocks a protein called CD47. CD47 is present on cancer cells and is used by those cells to hide from the body's immune system. By blocking CD47, TTI-621 and TTI-622 may help the immune system find and destroy cancer cells. Pembrolizumab is a monoclonal antibody directed against human cell surface receptor PD-1 (programmed death-1 or programmed cell death-1) that works by helping the body\'s immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Giving TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab may kill more cancer cells in patients with relapsed or refractory diffuse large B-cell lymphoma.
This phase Ib trial studies the effects of NKTR-255 in combination with chimeric antigen (CAR)-T cell therapy and to see how well they work in treating patients with large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). NKTR-255 is an investigational IL-15 receptor agonist designed to boost the immune system's natural ability to fight cancer. T cells are infection fighting blood cells that can kill tumor cells. Lisocabtagene maraleucel is a CAR-T cell product that consists of genetically engineered T cells, modified to recognize CD19, a protein on the surface of cancer cells. These CD19-specific T cells may help the body's immune system identify and kill CD19-positive cancer cells. Giving NKTR-255 together with lisocabtagene maraleucel may work better in treating large B-cell lymphoma than either drug alone.
The purpose of the study is to evaluate whether receiving the pneumococcal 13-valent conjugate vaccine (PCV13) before and after CD19-targeted CAR T cell therapy will optimize cellular and humoral immunity to pneumococcus.
This study will assess safety and feasibility of infusing genetically modified autologous T cells transduced to express a chimeric antigen receptor targeting the B cell surface antigen Cluster of Differentiation 19 (CD19)
This is a phase 1 study to evaluate safety and dose-limiting toxicity of autologous CD30.CAR-T in subjects with relapsed or refractory CD30+ Non-Hodgkin Lymphoma
This study is designed as a long-term follow-up study of participants who have receive genetically modified autologous CLBR001 CAR-T cells
The purpose of this study is to test the safety of 19(T2)28z1xx CAR T cells in people with relapsed/refractory B-cell cancers. The researchers will try to find the highest dose of 19(T2)28z1xx CAR T cells that causes few or mild side effects in participants. Once they find this dose, they can test it in future participants to see if it is effective in treating their relapsed/refractory B-cell cell cancers. This study will also look at whether 19(T2)28z1xx CAR T cells work against participants' cancer.
CLBR001 + SWI019 is an combination investigational immunotherapy being evaluated as a potential treatment for patients diagnosed with B cell malignancies who are refractory or unresponsive to salvage therapy or who cannot be considered for or have progressed after autologous hematopoietic cell transplantation. This first-in-human study will assess the safety and tolerability of CLBR001 + SWI019 and is designed to determine the maximum tolerated dose (MTD) or optimal SWI019 dose (OSD). Patients will be administered a single infusion of CLBR001 cells followed by cycles of SWI019. The study will also assess the pharmacokinetics and pharmacodynamics of CLBR001 + SWI019.
The drug that will be investigated in the study is an antibody, GEN3009. Since this is the first study of GEN3009 in humans, the main purpose is to evaluate safety. Besides safety, the study will determine the recommended GEN3009 dose to be tested in a larger group of patients and assess preliminary clinical activity of GEN3009. GEN3009 will be studied in a broad group of cancer patients, having different kinds of lymphomas. All patients will get GEN3009 either as a single treatment (monotherapy) or in combination with another antibody-candidate for treatment of cancer in the blood. The study consists of two parts: Part 1 tests increasing doses of GEN3009 ("escalation"), followed by Part 2 which tests the recommended GEN3009 dose from Part 1 ("expansion").