168 Clinical Trials for Various Conditions
This phase Ib trial studies the side effects and best dose of alemtuzumab when given together with itacitinib in treating patients with T-cell prolymphocytic leukemia. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with alemtuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving itacitinib and alemtuzumab may work better in treating patients with T-cell prolymphocytic leukemia compared to standard of care treatment.
The main objective of this study is to evaluate the efficacy of the combination of venetoclax plus ibrutinib for treating adults with T-cell prolymphocytic leukemia (T-PLL).
This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
This study is evaluating the safety and efficacy of a new BTK inhibitor, acalabrutinib, for the treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL).
This is a Phase II, single institution open-label, non-randomized monotherapy study to evaluate the clinical efficacy and durable disease control of PCI-32765 administered to patients with relapsed/refractory CLL/SLL/PLL of all risk categories with patients having deletion 17p13 independently evaluated.
This phase I/II trial studies the side effects and the best dose of ofatumumab and dinaciclib and to see how well they work in treating patients with relapsed or refractory chronic lymphocytic leukemia, small lymphocytic lymphoma, or B-cell prolymphocytic leukemia. Monoclonal antibodies, such as ofatumumab, can find cancer cells and help kill them. Dinaciclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ofatumumab together with dinaciclib may kill more cancer cells.
This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
RATIONALE: Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and the best dose of carfilzomib in treating patients with relapsed or refractory chronic lymphocytic leukemia(CLL),small lymphocytic lymphoma(SLL), or prolymphocytic leukemia (PLL).
We hope to learn more about the clinical efficacy of bortezomib in T-cell prolymphocytic leukemia. Patients will be selected as a possible participant in this study because they have a bone marrow disorder known as T-cell prolymphocytic leukemia (T-cell PLL) which does not tend to respond well to conventional treatment with chemotherapy.
This phase I trial is studying the side effects and the best dose of alvespimycin hydrochloride in treating patients with relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or B-cell prolymphocytic leukemia (B-PLL). Drugs used in chemotherapy, such as alvespimycin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
Multicenter, open-label, study of alvocidib in previously treated chronic lymphocytic leukemia patients. Primary objective is to determine overall response rate. The secondary objectives are: * to assess overall safety, * to assess duration of response, progression free survival, and overall survival. Clinical benefit and pharmacokinetics parameters are also evaluated.
RATIONALE: BL22 immunotoxin can find tumor cells and kill them without harming normal cells. PURPOSE: This phase I trial is studying the side effects and best dose of BL22 immunotoxin in treating patients with refractory B-cell chronic lymphocytic leukemia, prolymphocytic leukemia, or non-Hodgkin's lymphoma.
This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin when given with or without rituximab in treating patients with relapsed B-cell chronic lymphocytic leukemia or prolymphocytic leukemia. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Monoclonal antibodies may kill cancer cells that are left after chemotherapy. Giving 17-N-allylamino-17-demethoxygeldanamycin with or without rituximab may kill more cancer cells.
This phase II trial is studying how well flavopiridol works in treating patients with chronic lymphocytic leukemia or prolymphocytic leukemia. Drugs used in chemotherapy, such as flavopiridol, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
RATIONALE: Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Compassionate use refers to providing a drug to a patient on humanitarian grounds before the drug has received official approval. PURPOSE: Compassionate use of Campath-1H in treating patients who have refractory prolymphocytic leukemia or chronic lymphocytic leukemia.
This is an open-label, phase I/II study of duvelisib in combination with Venetoclax for patients with relapsed/refractory NHL. Duvelisib is an FDA approved, marketed product used to treat certain patients with leukemia and lymphoma and Venetoclax, which is approved for treatment of certain patients with acute myeloid leukemia. The combination of these two drugs is experimental. Experimental means that it is not approved by the United States Food and Drug Administration (FDA). The researchers want to find out how safe it is to combine these drugs and how well this combination can work for your cancer.
The goal of this study is to evaluate the pharmacokinetics (PK), safety, and efficacy of APG-115 as a single agent or in combination with APG-2575 in patients with T-PLL and NHL.
This phase II trial studies how well letermovir works for the prevention of cytomegalovirus reactivation in patients with hematological malignancies treated with alemtuzumab. Patients receiving treatment with alemtuzumab may experience cytomegalovirus reactivation. Letermovir may block cytomegalovirus replication and prevent infection.
This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well ibrutinib or idelalisib works in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma that is persistent or has returned (relapsed) after donor stem cell transplant. Ibrutinib and idelalisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of selinexor when given together with ibrutinib in treating patients with chronic lymphocytic leukemia or aggressive non-Hodgkin lymphoma that has returned after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving selinexor together with ibrutinib may be a better treatment for chronic lymphocytic leukemia or aggressive non-Hodgkin lymphoma.
This phase II trial studies ibrutinib with or without rituximab in treating patients with chronic lymphocytic leukemia that has come back after treatment. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether ibrutinib is more effective with or without rituximab in treating chronic lymphocytic leukemia.
This phase I trial studies the side effects and best dose of lenalidomide when given together with ibrutinib in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with ibrutinib may work better in treating chronic lymphocytic leukemia or small lymphocytic lymphoma.
This phase II trial studies autologous peripheral blood stem cell transplant followed by donor bone marrow transplant in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Autologous stem cell transplantation uses the patient's stem cells and does not cause graft versus host disease (GVHD) and has a very low risk of death, while minimizing the number of cancer cells. Peripheral blood stem cell (PBSC) transplant uses stem cells from the patient or a donor and may be able to replace immune cells that were destroyed by chemotherapy. These donated stem cells may help destroy cancer cells. Bone marrow transplant known as a nonmyeloablative transplant uses stem cells from a haploidentical family donor. Autologous peripheral blood stem cell transplant followed by donor bone marrow transplant may work better in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia.
This clinical trial studies how well giving fludarabine phosphate together with total-body irradiation (TBI) before donor peripheral blood stem cell transplant works in treating patients with chronic lymphocytic leukemia or small lymphocytic leukemia. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy before or after peripheral blood stem cell transplant also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after the transplant may stop this from happening.
This phase I/II trial studies how well autologous stem cell transplant followed by donor stem cell transplant works in treating patients with lymphoma that has returned or does not respond to treatment. Peripheral blood stem cell transplant using stem cells from the patient or a donor may be able to replace immune cells that were destroyed by chemotherapy used to kill cancer cells. The donated stem cells may also help destroy any remaining cancer cells (graft-versus-tumor effect).
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
This research is being done to learn whether drug called itacitinib, which is a novel inflammation- and immune-lowering drug (immunosuppressant), can be given before and after non-myeloablative peripheral blood stem cell transplantation (PBSCT; also known as a 'mini' transplant) to help prevent certain complications such as cytokine release syndrome (CRS) for patients with blood cancers, using peripheral blood from a relative. The investigators will also examine if by using itacitinib the investigators can reduce the duration of MMF (other immune suppressive drug administration posttransplant).
This is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.
This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.