148 Clinical Trials for Various Conditions
This is a unique dose-escalation trial that will titrate doses of umbilical cord blood (UCB) Treg and CD3+ Teff cells with the goal of infusing as many CD3+ Teff cells as possible without conferring grade II-IV acute graft-versus-host disease (GVHD). In this study, the investigators propose to add UCB Treg and UCB CD3+ Teff cells to the two TCD UCB donor units with the goal of transplanting as many CD3+ Teff cells as possible without reintroducing risk of acute GVHD. The investigators hypothesize that Treg will permit the reintroduction of CD3+ Teff cells that will provide a bridge while awaiting HSC T cell recovery long term. The co-infusion of Treg will prevent GVHD without the need for prolonged pharmacologic immunosuppression.
Background: * Mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and other lymphoid malignancies are all incurable lymphoid malignancies that mainly affect persons in their late 60s and early 70s. Conventional chemotherapy can achieve high rates of clinical response, but relapse following these responses is almost universal. Patients with lymphoid malignancies relapse because their tumor cells become resistant to chemotherapy; therefore, new types of drugs are needed for better treatment responses. * The investigational drug ON 01910.Na has been shown to be active against MCL and CLL cells, but further research is needed to determine the most safe and effective dose for this drug. Objectives: * To determine the maximum tolerated dose (the highest dose that does not cause unacceptable side effects) of ON 01910.Na in patients with cancers of the lymphoid cells. * To study the effects that ON 01910.Na has on cancers of the lymphoid cells. Eligibility: * Patients 18 years of age and older who have been diagnosed with cancer of the lymphoid cells, and who have not been able to take or have not benefitted from existing treatment options. Design: * Evaluations before the treatment period: * Full medical history and physical examination, and pregnancy test for women. * Blood and urine tests. * Disease evaluation with computerized tomography (CT) scan, magnetic resonance imaging (MRI), electrocardiogram; bone marrow and lymph node biopsies; and skeletal x-rays, if clinically indicated. * Treatment with ON 01910.Na: * Different research subjects will receive increasing doses of ON 01910.Na to determine which dose is considered safe. * To reduce the risk of one rare serious side effect of treatment for myeloid malignancies, patients will take allopurinol 12 hours before and 7 days after each drug infusion, one 300 mg pill each day. * Cycles 1 2: Patients will be admitted to the clinical center for 2 days at the beginning of each cycle. Each cycle involves intravenous infusion of ON 01910.Na continuously for a period of 48 hours, followed by 12 days of observation. Researchers will try to maintain the schedule of 2 days of infusion every 14 days, but the interval between doses may be extended if patients experience delayed recovery blood counts. * Cycles 3 4: Patients who are doing well and choose to continue may receive an additional two cycles (2 days of inpatient infusion followed by 12 days of outpatient observation). At the end of cycle 4, researchers will determine if the disease is responding to therapy. Patients who experience side effects may continue to take ON 01910.Na at a lower dose or may stop receiving the drug. * Patients who respond well to four cycles of ON 01910.Na may be eligible for additional cycles of ON 01910.Na. * Patients who need to start another medication to treat their disease will stop taking ON 01910.Na, and the researchers will perform a final study visit 2 weeks after the last dose of ON 01910.Na. After that, participation in the study will be complete.
This phase II trial studies how well giving lenalidomide with or without rituximab works in treating patients with progressive or relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), or non-Hodgkin lymphoma (NHL). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with or without rituximab may kill more cancer cells.
RATIONALE: Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and the best dose of carfilzomib in treating patients with relapsed or refractory chronic lymphocytic leukemia(CLL),small lymphocytic lymphoma(SLL), or prolymphocytic leukemia (PLL).
This is a Phase II, single institution open-label, non-randomized monotherapy study to evaluate the clinical efficacy and durable disease control of PCI-32765 administered to patients with relapsed/refractory CLL/SLL/PLL of all risk categories with patients having deletion 17p13 independently evaluated.
This phase I/II trial studies the side effects and the best dose of ofatumumab and dinaciclib and to see how well they work in treating patients with relapsed or refractory chronic lymphocytic leukemia, small lymphocytic lymphoma, or B-cell prolymphocytic leukemia. Monoclonal antibodies, such as ofatumumab, can find cancer cells and help kill them. Dinaciclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ofatumumab together with dinaciclib may kill more cancer cells.
This phase I trial is studying the side effects and the best dose of alvespimycin hydrochloride in treating patients with relapsed chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or B-cell prolymphocytic leukemia (B-PLL). Drugs used in chemotherapy, such as alvespimycin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
RATIONALE: BL22 immunotoxin can find tumor cells and kill them without harming normal cells. PURPOSE: This phase I trial is studying the side effects and best dose of BL22 immunotoxin in treating patients with refractory B-cell chronic lymphocytic leukemia, prolymphocytic leukemia, or non-Hodgkin's lymphoma.
This is an open-label, phase I/II study of duvelisib in combination with Venetoclax for patients with relapsed/refractory NHL. Duvelisib is an FDA approved, marketed product used to treat certain patients with leukemia and lymphoma and Venetoclax, which is approved for treatment of certain patients with acute myeloid leukemia. The combination of these two drugs is experimental. Experimental means that it is not approved by the United States Food and Drug Administration (FDA). The researchers want to find out how safe it is to combine these drugs and how well this combination can work for your cancer.
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
This Phase 1a/1b study will evaluate the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Adult patients with Relapsed or Refractory (R/R) Lymphomas, Large Granular Lymphocytic Leukemia (LGL-L), T-cell prolymphocytic leukemia (T-PLL), and Solid Tumors. The Phase 1a stage of the study will explore escalating doses of single-agent KT-333. The Phase Ib stage will consist of 4 expansion cohorts to further characterize the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of KT-333 in Peripheral T-cell Lymphoma (PTCL), Cutaneous T-Cell Lymphoma (CTCL), LGL-L, and solid tumors.
This study will test the safety of ruxolitinib, given at one dose that does not change, and duvelisib, given at different doses, to find out what effects, if any, the study treatment has on people with relapsed or refractory NK-cell or T-cell lymphoma.
This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effect and best dose of entospletinib when giving together with obinutuzumab and to see how well they work in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma that has come back. Entospletinib may stop the growth of cancer cells by blocking some of the enzymes need for cell growth. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Giving entospletinib and obinutuzumab together may work better in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma.
This phase II trial studies how well ibrutinib or idelalisib works in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma that is persistent or has returned (relapsed) after donor stem cell transplant. Ibrutinib and idelalisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of selinexor when given together with ibrutinib in treating patients with chronic lymphocytic leukemia or aggressive non-Hodgkin lymphoma that has returned after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving selinexor together with ibrutinib may be a better treatment for chronic lymphocytic leukemia or aggressive non-Hodgkin lymphoma.
This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
This study is evaluating the safety and efficacy of a new BTK inhibitor, acalabrutinib, for the treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL).
This phase I trial studies the side effects and best dose of lenalidomide when given together with ibrutinib in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with ibrutinib may work better in treating chronic lymphocytic leukemia or small lymphocytic lymphoma.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
RATIONALE: Bortezomib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with azacitidine in treating patients with relapsed or refractory T-cell lymphoma.
This phase I trial is studying the side effects and the best dose of alvocidib when given together with cyclophosphamide and rituximab in treating patients with high risk B-cell chronic lymphocytic leukemia or small lymphocytic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can also block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Other find cancer cells and help kill them or carry cancer-killing substances to them. Giving cyclophosphamide, alvocidib, and rituximab together may kill more cancer cells.
This is a Pilot/Phase I, single arm, single center, open label study to determine the safety, efficacy and cellular kinetics of CART19 (CTL019) in chemotherapy resistant or refractory CD19+ leukemia and lymphoma subjects. The study consists of three Phases: 1) a Screening Phase, followed by 2) an Intervention/Treatment Phase consisting of apheresis, lymphodepleting chemotherapy (determined by the Investigator and based on subject's disease burden and histology, as well as on the prior chemotherapy history received), infusions of CTL019, tumor collection by bone marrow aspiration or lymph node biopsy (optional, depending on availability), and 3) a Follow-up Phase. The suitability of subjects' T cells for CTL019 manufacturing was determined at study entry. Subjects with adequate T cells were leukapheresed to obtain large numbers of peripheral blood mononuclear cells for CTL019 manufacturing. The T cells were purified from the peripheral blood mononuclear cells, transduced with TCR-ζ/4-1BB lentiviral vector, expanded in vitro and then frozen for future administration. The number of subjects who had inadequate T cell collections, expansion or manufacturing compared to the number of subjects who had T cells successfully manufactured is a primary measure of feasibility of this study. Unless contraindicated and medically not advisable based on previous chemotherapy, subjects were given conditioning chemotherapy prior to CTL019 infusion. The chemotherapy was completed 1 to 4 days before the planned infusion of the first dose of CTL019. Up to 20 evaluable subjects with CD19+ leukemia or lymphoma were planned to be dosed with CTL019. A single dose of CTL019 (consisting of approximately 5x10\^9 total cells, with a minimal acceptable dose for infusion of 1.5x10\^7 CTL019 cells) was to be given to subjects as fractions (10%, 30% and 60% of the total dose) on Day 0, 1 and 2. A second 100% dose of CTL019 was initially permitted to be given on Day 11 to 14 to subjects, providing they had adequate tolerance to the first dose and sufficient CTL019 was manufactured.
This phase II trial studies autologous peripheral blood stem cell transplant followed by donor bone marrow transplant in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Autologous stem cell transplantation uses the patient's stem cells and does not cause graft versus host disease (GVHD) and has a very low risk of death, while minimizing the number of cancer cells. Peripheral blood stem cell (PBSC) transplant uses stem cells from the patient or a donor and may be able to replace immune cells that were destroyed by chemotherapy. These donated stem cells may help destroy cancer cells. Bone marrow transplant known as a nonmyeloablative transplant uses stem cells from a haploidentical family donor. Autologous peripheral blood stem cell transplant followed by donor bone marrow transplant may work better in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia.
RATIONALE: Collecting information about the effect of hematologic cancer and its treatment on quality of life may help doctors learn more about the disease and plan the best treatment. PURPOSE: This phase I trial is studying quality of life in younger leukemia and lymphoma survivors.
This is a phase I dose escalation study of DT2219ARL for the treatment of relapsed or refractory B-lineage leukemia and lymphoma. Patients will receive a single course of DT2219ARL as a 4 hour infusion on days 1, 3, 5, and 8. Weekly follow-up will continue through day 29, at which time a disease reassessment will be done. For patients in remission, follow-up will continue monthly until disease progression or start of a new treatment. Otherwise day 29 will be the final study visit if there is no ongoing toxicity. This phase I study will use Continual Reassessment Method (CRM) to establish a maximum tolerated dose (MTD) of DT2219ARL. Up to 3 dose levels will be tested with an additional dose level (-1) if dose level 1 proves too toxic. The goal of CRM is to identify the dose level which correspondences to a desired toxicity rate of 33% or less using grade 3 or 4 capillary leak syndrome and any grade 3 or greater toxicity attributed to DT2219ARL as the targeted toxicity (based on CTCAE version 4).
This phase I trial studies the side effects and best dose of lenalidomide when given together with alvocidib in treating patients with relapsed or refractory B-cell chronic lymphocytic leukemia or small lymphocytic lymphoma. Lenalidomide may stop the growth of leukemia or lymphoma by blocking blood flow to the cancer. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with alvocidib may kill more cancer cells.
RATIONALE: Everolimus and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of everolimus when given together with bortezomib in treating patients with relapsed or refractory lymphoma.
RATIONALE: Drugs used in chemotherapy, such as clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I/II trial is studying the side effects and best dose of clofarabine and to see how well it works in treating patients with T-cell or natural killer-cell lymphoma that has relapsed or not responded to previous treatment.
RATIONALE: Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. Giving rituximab and cyclophosphamide together with pegfilgrastim may be effective in treating leukemia or non-Hodgkin's lymphoma. PURPOSE: This phase II trial is studying how well giving rituximab and cyclophosphamide together with pegfilgrastim works in treating patients with B-cell leukemia, low-grade non-Hodgkin's lymphoma, or mantle cell lymphoma.