Treatment Trials

13 Clinical Trials for Various Conditions

Focus your search

UNKNOWN
sEphB4-HSA in Treating Patients With Metastatic Castration-Resistant Prostate Cancer
Description

The purpose of this phase II, single-arm, open-label, three center study is to evaluate the efficacy, safety, and tolerability of sEphB4-HSA in patients with mCRPC (metastatic castration-resistant prostate cancer). The study drug, sEphB4-HAS, is a form of protein that has not been approved for sale by the United States Food and Drug Administration (FDA). The study drug prevents tumor cells from multiplying and blocks several compounds that promote the growth of blood vessels that bring nutrients to the tumor.

COMPLETED
Enzalutamide With Venetoclax in Treating Patients With Metastatic Castration Resistant Prostate Cancer
Description

This phase Ib/II trial studies the side effects and best dose of venetoclax when given together with enzalutamide and to see how well they work in treating patients with castration resistant prostate cancer that has spread to other places in the body. Androgens can cause the growth of prostate cancer cells. Drugs, such as enzalutamide, may lessen the amount of androgens made by the body. Venetoclax may target a special group of prostate cancer cells that is known to lead to resistance to treatment. Giving enzalutamide and venetoclax may work better in treating patients with castration resistant prostate cancer.

WITHDRAWN
Enzalutamide and Decitabine in Treating Patients With Metastatic Castration Resistant Prostate Cancer
Description

This phase I/II trial studies the side effects and best dose of decitabine and how well it works when given together with enzalutamide in treating patients with castration resistant prostate cancer that has spread to other places in the body. Androgen can cause the growth of prostate cancer cells. Drugs, such as enzalutamide, may lessen the amount of androgen made by the body. Decitabine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving decitabine and enzalutamide may work better in treating participants with castration resistant prostate cancer.

ACTIVE_NOT_RECRUITING
Abiraterone Acetate and Antiandrogen Therapy With or Without Cabazitaxel and Prednisone in Treating Patients With Metastatic, Castration-Resistant Prostate Cancer Previously Treated With Docetaxel
Description

This randomized phase II trial studies how well abiraterone acetate and antiandrogen therapy, with or without cabazitaxel and prednisone, work in treating patients with castration-resistant prostate cancer previously treated with docetaxel that has spread to other parts of the body. Androgens can cause the growth of prostate cancer cells. Hormone therapy using abiraterone acetate and antiandrogen therapy may fight prostate cancer by lowering and/or blocking the use of androgens by the tumor cells. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving abiraterone acetate and antiandrogen therapy with or without cabazitaxel and prednisone may help kill more tumor cells.

TERMINATED
Selinexor in Treating Patients With Abiraterone Acetate and/or Enzalutamide Refractory Metastatic Castration-Resistant Prostate Cancer
Description

This phase II trial studies selinexor in treating patients with prostate cancer that has spread to other parts of the body (metastatic), keeps growing even when the amount of testosterone in the body is reduced to very low levels (castration-resistant), and did not respond to treatment (refractory) with abiraterone acetate and/or enzalutamide. Selinexor may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Vaccine Therapy and Pembrolizumab in Treating Patients With Hormone-Resistant, Metastatic Prostate Cancer
Description

This randomized pilot trial studies vaccine therapy and pembrolizumab in treating patients with prostate cancer that does not respond to treatment with hormones (hormone-resistant) and has spread to other places in the body (metastatic). Vaccines made from deoxyribonucleic acid (DNA), such as pTVG-HP plasmid DNA vaccine, may help the body build an effective immune response to kill tumor cells. Monoclonal antibodies, such as pembrolizumab, may find tumor cells and help kill them. Giving pTVG-HP plasmid DNA vaccine and pembrolizumab may kill more tumor cells.

COMPLETED
Genetic and Molecular Mechanisms in Assessing Response in Patients With Prostate Cancer Receiving Enzalutamide Therapy
Description

This phase II trial studies genetic and molecular mechanisms in assessing response in patients with prostate cancer receiving enzalutamide therapy. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as enzalutamide, may lessen the amount of androgens made by the body. Studying samples of tissue and blood in the laboratory from patients with prostate cancer may help doctors better understand castration-resistant prostate cancer. It may also help doctors make improvements in prostate cancer treatment.

RECRUITING
Collecting and Studying Blood and Tissue Samples From Patients With Locally Recurrent or Metastatic Prostate or Bladder/Urothelial Cancer
Description

This study collects and studies tissue and blood samples from patients with prostate or bladder/urothelial cancer that has recurred (come back) at or near the same place as the original (primary) tumor or has spread to other parts of the body. Studying samples of blood and tissue samples from patients with prostate or bladder/urothelial cancer in the laboratory may help doctors learn more about new biomarkers, potential drug targets, and resistance developing in response to treatment. It may also help doctors find better ways to treat the cancer.

COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
TERMINATED
Cyclophosphamide and Cryoablation in Treating Patients With Advanced or Metastatic Epithelial Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.

Conditions
COMPLETED
Laboratory Assay in Determining Cancer Resistance in Patients With Metastatic Cancer and in Healthy Participants
Description

RATIONALE: Studying samples of blood and tissue in the laboratory from patients with cancer and from healthy participants may help doctors learn more about cancer. PURPOSE: This laboratory study is looking at an assay in determining cancer resistance in patients with metastatic cancer and in healthy participants.

Conditions
COMPLETED
Combination Chemotherapy Plus Filgrastim in Treating Patients With Advanced Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Colony-stimulating factors such as filgrastim may increase the number of immune cells found in bone marrow or peripheral blood and may help a person's immune system recover from the side effects of chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus filgrastim in treating patients who have advanced solid tumors.

COMPLETED
MS-275 in Treating Patients With Advanced Solid Tumors or Lymphoma
Description

RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.

Conditions