134 Clinical Trials for Various Conditions
This phase II trial studies the side effects of hypofractionated radiation therapy in treating patients with soft tissue sarcomas prior to surgery. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects.
This study is for patients who have been diagnosed with soft tissue sarcoma that has spread (metastasized) or that is not eligible for removal by surgery. The purpose of this study is to determine how soft tissue sarcomas respond to treatment with an investigational drug called tivozanib. In some lab and clinical studies, tivozanib has been shown to interfere with the growth of some types of tumors. The study will also evaluate how safe the study treatment is by observing how many and what kind of adverse events (side effects) participants experience.
This randomized phase II trial is studying how well giving selumetinib together with or without temsirolimus works in treating patients with metastatic, recurrent, or locally advanced soft tissue sarcoma that cannot be removed by surgery. Selumetinib and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether giving selumetinib together with temsirolimus is more effective than giving selumetinib alone.
This phase II trial is studying 18F-fluoromisonidazole and fludeoxyglucose F 18 PET/CT scans to see how well they work in assessing oxygen in tumor tissue of patients with soft tissue sarcoma undergoing chemotherapy with or without radiation therapy. Using diagnostic procedures, such as 18F-fluoromisonidazole and fludeoxyglucose F 18 PET scan and CT scan, to find oxygen in tumor cells may help in planning cancer treatment. It may also help doctors predict how well a patient will respond to treatment.
This phase II trial is studying how well giving vorinostat together with bortezomib works in treating patients with advanced soft tissue sarcoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vorinostat together with bortezomib may kill more tumor cells.
Thalidomide may stop the growth of soft tissue sarcoma by stopping blood flow to the tumor. Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy, such as doxorubicin, ifosfamide, and dacarbazine, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving thalidomide together with radiation therapy and/or chemotherapy before surgery may shrink the tumor so that it can be removed. This phase II trial is studying how well giving preoperative (before surgery) thalidomide together with radiation therapy works in treating patients with low-grade primary soft tissue sarcoma, and how well giving thalidomide together with radiation therapy, doxorubicin, ifosfamide, and dacarbazine works in treating patients with high-grade or intermediate-grade primary soft tissue sarcoma of the arm, leg, chest wall, or abdominal wall.
Phase II trial to study the effectiveness of perifosine in treating patients who have advanced soft tissue sarcoma. Drugs used in chemotherapy such as perifosine use different ways to stop tumor cells from dividing so they stop growing or die.
Phase II trial to study the effectiveness of BMS-247550 in treating patients who have advanced soft tissue sarcoma. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die.
This is an open-label Phase 2 randomized study that will examine the use of the study agents, CMB305 (sequentially administered LV305 which is a dendritic cell-targeting viral vector expressing the New York Esophageal Squamous Cell Carcinoma 1 gene \[NY-ESO-1\] and G305 which is a NY-ESO-1 recombinant protein plus glucopyranosyl lipid adjuvant-stable emulsion \[GLA-SE\]) in combination with atezolizumab or atezolizumab alone, in participants with locally advanced, relapsed or metastatic sarcoma (synovial or myxoid/round cell liposarcoma) expressing the NY-ESO-1 protein. There is no formal primary hypothesis for this study.
This pilot clinical trial studies isolated limb perfusion with melphalan in treating patients with stage IIIB-IV melanoma or sarcoma. Drugs used in chemotherapy, such as melphalan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Heating a chemotherapy solution and infusing it directly into the arteries around the tumor may kill more tumor cells.
The purpose of this clinical research study is to learn if pazopanib when given in combination with topotecan can help to control sarcomas. The safety of this drug combination will also be studied. Pazopanib hydrochloride and topotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best way to give NY-ESO-1 specific T cells after cyclophosphamide in treating patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving NY-ESO-1 specific T cells with cyclophosphamide may kill more tumor cells.
The purpose of this study is to see whether a drug called regorafenib might be effective in treating angiosarcoma. This study is for patients who have angiosarcoma that has gotten worse after they received chemotherapy. Regorafenib is a type of drug called a kinase inhibitor. Regorafenib interferes with how some kinase proteins work. Some of these kinases in cancer cells might normally help the cancer cells grow or form new blood vessels that could feed a growing tumor. By blocking these proteins, regorafenib may help stop the growth of certain cancers.
This research trial studies tumor tissue to identify important proteins and biomarkers from patients with rhabdomyosarcoma that has spread to other places in the body and usually cannot be cured or controlled with treatment. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors identify biomarkers related to cancer.
This phase II trial studies how well alisertib works in treating patients with sarcoma that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced) or has spread to other places in the body (metastatic). Alisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This phase II trial studies how well trebananib works in treating patients with advanced angiosarcoma that cannot be removed by surgery. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor.
This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.
This phase II trial studies how well therapeutic angiotensin-(1-7) works as second-line therapy or third-line therapy in treating patients with metastatic sarcoma that cannot be removed by surgery. Therapeutic angiotensin-(1-7) may stop the growth of sarcoma by blocking blood flow to the tumor. Funding Source - FDA Office of Orphan Drug Products (OOPD)
This phase I trial studies the side effects and best dose of bevacizumab and temsirolimus alone or in combination with valproic acid or cetuximab in treating patients with a malignancy that has spread to other places in the body or other disease that is not cancerous. Immunotherapy with bevacizumab and cetuximab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether bevacizumab and temsirolimus work better when given alone or with valproic acid or cetuximab in treating patients with a malignancy or other disease that is not cancerous.
This randomized phase II trial studies how well gemcitabine hydrochloride works with or without pazopanib hydrochloride in treating patients with refractory soft tissue sarcoma. Drugs used in chemotherapy, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Pazopanib hydrochloride may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether gemcitabine hydrochloride is more effective with or without pazopanib hydrochloride in treating patients with soft tissue sarcoma.
This phase I trial studies the side effects and how well giving autologous T cells with cyclophosphamide works in treating patients with soft tissue sarcoma that is metastatic or cannot be removed by surgery. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving autologous T cells together with cyclophosphamide may kill more tumor cells.
This phase II trial studies how well pazopanib hydrochloride works in treating patients with advanced angiosarcoma. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II clinical trial is studying the side effects and best dose of everolimus when given with imatinib mesylate and to see how well they work in treating patients with locally advanced, locally recurrent or metastatic soft tissue sarcoma. Everolimus and imatinib mesylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II trial studies how well vinorelbine tartrate and cyclophosphamide work in combination with bevacizumab or temsirolimus in treating patients with recurrent or refractory rhabdomyosarcoma. Drugs used in chemotherapy, such as vinorelbine tartrate and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of rhabdomyosarcoma by blocking blood flow to the tumor. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy is more effective when given together with bevacizumab or temsirolimus in treating rhabdomyosarcoma.
This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.
This phase II trial studies how well temsirolimus and cixutumumab works in treating patients with locally advanced, metastatic, or recurrent soft tissue sarcoma or bone sarcoma. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cixutumumab, can block tumor growth by blocking the ability of tumor cells to grow and spread. Giving temsirolimus with cixutumumab may be an effective treatment for soft tissue or bone sarcoma.
The purpose of this study is to collect and store tumor tissue, blood, and bone marrow samples from patients with soft tissue sarcoma that will be tested in the laboratory. Collecting and storing samples of tumor tissue, blood, and bone marrow from patients to test in the laboratory may help the study of cancer.
This phase II trial is studying the side effects and how well cixutumumab works in treating patients with relapsed or refractory solid tumors. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.