231 Clinical Trials for Various Conditions
This phase I/II trial is studying the side effects and best dose of SGN-30 when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with recurrent anaplastic large cell lymphoma. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as SGN-30, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.
To investigate safety and antitumor activity of SGN-30 in patients with Hodgkin's Disease and anaplastic large cell lymphoma (ALCL). As of March 22, 2005, interim analysis of the Hodgkin's Disease (HD) arm has been completed per the statistical plan in the protocol. SG030-0003 is now closed to further recruitment of HD patients.
This phase I trial finds the appropriate parsaclisib dose level in combination with romidepsin for the treatment of T-cell lymphomas that have come back (relapsed) or that have not responded to standard treatment (refractory). The other goals of this trial are to find the proportion of patients whose cancer is put into complete remission or significantly reduced by romidepsin and parsaclisib, and to measure the effectiveness of romidepsin and parsaclisib in terms of patient survival. Romidepsin blocks certain enzymes (histone deacetylases) and acts by stopping cancer cells from dividing. Parsaclisib is a PI3K inhibitor. The PI3K pathway promotes cancer cell proliferation, growth, and survival. Parsaclisib, thus, may stop the growth of cancer cells by blocking PI3K enzymes needed for cell growth. Giving romidepsin and parsaclisib in combination may work better in treating relapsed or refractory T-cell lymphomas compared to either drug alone.
This phase I/II trial studies the side effects and best dose of modified umbilical cord blood immune cells (natural killer \[NK\] cells) combined with the antibody AFM13 (AFM13-NK) and AFM13 alone in treating patients with CD30 positive Hodgkin lymphoma or non-Hodgkin lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as AFM13, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Giving AFM13 loaded with NK cells followed by AFM13 alone may kill more cancer cells and decrease cancer growth in patients with CD30 positive AFM13-NK Hodgkin and Non-Hodgkin lymphomas.
This phase I/II trial studies the side effects of pembrolizumab and romidepsin and to see how well they work in treating participants with peripheral T-cell lymphoma that has come back or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and romidepsin may work better than pembrolizumab alone in treating participants with recurrent or refractory peripheral T-cell lymphoma.
This phase II trial studies how well onalespib works in treating patients with anaplastic large cell lymphoma, mantle cell lymphoma, or diffuse large B-cell lymphoma that has not responded to previous treatment (refractory) or that has returned after a period of improvement (recurrent). Onalespib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of pralatrexate when given together with pembrolizumab and how well they work in treating patients with peripheral T-cell lymphomas that has come back after a period of improvement or has not responded to treatment. Pralatrexate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and pralatrexate may work better in treating patients with peripheral T-cell lymphomas.
This phase II trial studies how well nivolumab works in treating patients with peripheral T-cell lymphoma that has come back after a period of improvement or that does not respond to treatment. Monoclonal antibodies, such as nivolumab, may block cancer growth in different ways by targeting certain cells.
This phase I trial studies the best dose and side effects of the VSV-hIFNβ-NIS vaccine with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab in treating patients with multiple myeloma, acute myeloid leukemia or lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). VSV-IFNβ-NIS is a modified version of the vesicular stomatitis virus (also called VSV). This virus can cause infection and when it does it typically infects pigs, cattle, or horses but not humans. The VSV used in this study has been altered by having two extra genes (pieces of DNA) added. The first gene makes a protein called NIS that is inserted into the VSV. NIS is normally found in the thyroid gland (a small gland in the neck) and helps the body concentrate iodine. Having this additional gene will make it possible to track where the virus goes in the body (which organs). The second addition is a gene for human interferon beta (β) or hIFNβ. Interferon is a natural anti-viral protein, intended to protect normal healthy cells from becoming infected with the virus. VSV is very sensitive to the effect of interferon. Many tumor cells have lost the capacity to either produce or respond to interferon. Thus, interferon production by tumor cells infected with VSV-IFNβ-NIS will protect normal cells but not the tumor cells. The VSV with these two extra pieces is referred to as VSV-IFNβ-NIS. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Immunotherapy with monoclonal antibodies, such as ipilimumab, nivolumab, and cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving VSV-IFNβ-NIS with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab may be safe and effective in treating patients with recurrent peripheral T-cell lymphoma.
This phase I trial studies the best dose and side effects of romidepsin when given in combination with ifosfamide, carboplatin, and etoposide in treating participants with peripheral T-cell lymphoma that has come back or does not respond to treatment. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving romidepsin, ifosfamide, carboplatin, and etoposide may work better in treating participants with peripheral T-cell lymphoma.
This phase I/II trial studies the side effects and best dose of lenalidomide when given after combination chemotherapy with or without rituximab and stem cell transplant and to see how well it works in treating patients with non-Hodgkin lymphoma that has not responded to treatment or has returned after a period of improvement and is resistant to chemotherapy. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, may block cancer growth by targeting certain cells. Giving lenalidomide after combination chemotherapy with or without rituximab may work better in treating patients with non-Hodgkin lymphoma.
This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.
This phase 1/2 trial the studies side effects and best dose of crizotinib and to see how well it works in treating young patients with solid tumors or anaplastic large cell lymphoma that has returned after a period of improvement or does not respond to treatment. Crizotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. (Phase 1 completed 2/15/13)
This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them
This phase I trial studies the side effects and the best dose of crizotinib when given together with combination chemotherapy in treating younger patients with solid tumors or anaplastic large cell lymphoma that has returned or does not respond to treatment. Crizotinib may stop the growth of tumor or cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cyclophosphamide, topotecan hydrochloride, dexrazoxane hydrochloride, doxorubicin hydrochloride, and vincristine sulfate, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving crizotinib together with combination chemotherapy may be a better treatment for patients with solid tumors or anaplastic large cell lymphoma.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of obatoclax mesylate when given together with vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride in treating young patients with relapsed or refractory solid tumors, lymphoma, or leukemia. Obatoclax mesylate may stop the growth of cancer cells by blocking some of the proteins needed for cell growth and causing the cells to self-destruct. Drugs used in chemotherapy, such as vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving obatoclax mesylate together with combination chemotherapy may kill more cancer cells.
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.
This phase I multicenter feasibility trial is studying the safety and potential efficacy of infusing ex vivo expanded cord blood progenitors with one unmanipulated umbilical cord blood unit for transplantation following conditioning with fludarabine, cyclophosphamide and total body irradiation (TBI), and immunosuppression with cyclosporine and mycophenolate mofetil (MMF) for patients with hematologic malignancies. Chemotherapy, such as fludarabine and cyclophosphamide, and TBI given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts are more likely to recover more quickly if increased numbers of cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one unexpanded cord blood unit is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two cord blood units makes up the patient's new blood system, and how quickly immune system cells return
This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.