Treatment Trials

10 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Intracranial Genetically Modified Immune Cells (TGFβR2KO/IL13Rα2 CAR T-Cells) for the Treatment of Recurrent or Progressive Glioblastoma or Grade 3 or 4 IDH-Mutant Astrocytoma
Description

This phase I trial tests the safety, side effects and best dose of TGFβR2KO/IL13Rα2 chimeric antigen receptor (CAR) T-cells given within the skull (intracranial) in treating patients with glioblastoma or IDH-mutant grade 3 or 4 astrocytoma that has come back after a period of improvement (recurrent) or that is growing, spreading, or getting worse (progressive). CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack tumor cells. T cells are taken from a patient's blood. When the cells are taken from the patient's own blood, it is known as autologous. Then the gene for special receptors that bind to a certain proteins on the patient's tumor cells are added to the T cells in the laboratory. The special receptors are called CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain tumors. Giving TGFβR2KO/IL13Rα2 CAR T cells may be safe, tolerable, and/or effective in treating patients with recurrent or progressive glioblastoma or grade 3 or 4 IDH-mutant astrocytoma.

RECRUITING
Testing the Addition of an Anti-Cancer Drug, Triapine, to the Usual Radiation Therapy for Recurrent Glioblastoma or Astrocytoma
Description

This phase I trial tests the safety, side effects, and best dose of triapine in combination with radiation therapy in treating patients with glioblastoma or astrocytoma that has come back after a period of improvement (recurrent). Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving triapine in combination with radiation therapy may be safe, tolerable, and/or effective in treating patients with recurrent glioblastoma or astrocytoma.

RECRUITING
Allogenic Adipose-Derived Mesenchymal Stem Cells for the Treatment of Recurrent Glioblastoma or Recurrent Astrocytoma in Patients Undergoing Craniotomy
Description

This phase I trial tests the safety, side effects, and best dose of allogenic adipose-derived mesenchymal stem cells (AMSCs) in treating patients with glioblastoma or astrocytoma that has come back (recurrent) who are undergoing brain surgery (craniotomy). Glioblastoma is the most common and most aggressive form of primary and malignant tumor of the brain. Currently, the standard of care for this disease includes surgical resection, followed by radiation with chemotherapy and tumor treating fields. Despite this aggressive therapy, the survival after finishing treatment remains low and the disease often reoccurs. Unfortunately, the available therapy options for recurrent glioblastoma are minimal and do not have a great effect on survival. AMSCs are found in body fat and when separated from the fat, are delivered into the surgical cavity at the time of surgery. When in direct contact with tumor cells, AMSCs affect tumor growth, residual tumor cell death, and chemotherapy resistance. The use of AMSCs delivered locally into the surgical cavity of recurrent glioblastoma during a craniotomy could improve the long-term outcomes of these patients by decreasing the progression rate and invasiveness of malignant cells.

ENROLLING_BY_INVITATION
Intrathecal Azacitidine and Nivolumab in Patients With Recurrent High-grade Glioma
Description

This is a single-arm open-label phase 1 dose escalation/expansion trial assessing the safety and efficacy of concurrent intrathecal azacitidine and intrathecal nivolumab in recurrent high-grade glioma.

RECRUITING
A Study of Debio 0123 in Combination With Temozolomide in Adult Participants With Recurrent or Progressive Glioblastoma and of Debio 0123 in Combination With Temozolomide and Radiotherapy in Adult Participants With Newly Diagnosed Glioblastoma
Description

The primary purpose of the Phase 1 (Dose Escalation) of this study is to identify the dose-limiting toxicities (DLTs) of Debio 0123 combined with temozolomide (TMZ) (Arm A) and with TMZ and radiotherapy (RT) (Arms B and C) and to characterize the safety and tolerability of these combinations in adult participants with glioblastoma (GBM). Arm B which was previously added to the protocol, has been permanently halted per the safety monitoring committees' decision on the safety findings of this arm. The primary purpose of Phase 1 (Dose expansion) of the study is to assess the doses studied under Phase 1 (Dose Escalation) Arm A and identify the recommended dose (RD) for further development. The Phase 2 will start once the RD Phase 1 has been defined. The primary objective of Phase 2 is to assess the efficacy of Debio 0123 at the RD for further development in combination with TMZ, compared to the standard of care (SOC) in adult participants with GBM.

SUSPENDED
A Study Testing the Effect of Immunotherapy (Ipilimumab and Nivolumab) in Patients With Recurrent Glioma With Elevated Mutational Burden
Description

This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).

COMPLETED
A Drug-drug Interaction Study of Avapritinib and Midazolam
Description

The purpose of this study is to investigate the effect of multiple dosing of avapritinib on the pharmacokinetics (PK) of midazolam in adult patients with metastatic or unresectable gastrointestinal stromal tumors (GIST), recurrent gliomas, or other KIT mutant tumors.

ACTIVE_NOT_RECRUITING
Temporally-modulated Pulsed Radiation Therapy (TMPRT) After Prior EBRT for Recurrent IDH-mutant Gliomas
Description

This clinical trial studies the side effects of temporally-modulated pulsed radiation therapy (TMPRT) in patients with IDH-mutant gliomas who have previously received radiation therapy to the brain. TMPRT is a radiation technique in which radiation is delivered in multiple small doses on a specific timed interval, instead of delivering one large dose at one time. This technique may improve efficacy while reducing toxicity and improving patient quality of life.

RECRUITING
All-Trans Retinoic Acid (ATRA) Plus PD-1 Inhibition in Recurrent IDH-Mutant Glioma
Description

This is a Phase II study of the combination of All-Trans Retinonic Acid (ATRA) and PD-1 inhibition (Retifanlimab) in patient with recurrent IDH-mutant glioma. The Sponsor-Investigator hypothesizes that the proposed regimen will be safe and stimulate a robust anti-tumor immune response.

COMPLETED
SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors
Description

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

Conditions
Anaplastic AstrocytomaAnaplastic EpendymomaAnaplastic GangliogliomaAnaplastic MeningiomaAnaplastic OligodendrogliomaPleomorphic Xanthoastrocytoma, AnaplasticAtypical Teratoid/Rhabdoid TumorBrain CancerBrain TumorCentral Nervous System NeoplasmsChoroid Plexus CarcinomaCNS Embryonal Tumor With Rhabdoid FeaturesGanglioneuroblastoma of Central Nervous SystemCNS TumorEmbryonal Tumor of CNSEpendymomaGlioblastomaGliomaGlioma, MalignantMedulloblastomaMedulloblastoma; Unspecified SiteMedulloepitheliomaNeuroepithelial TumorNeoplasmsNeoplasms, NeuroepithelialPapillary Tumor of the Pineal Region (High-grade Only)Pediatric Brain TumorPineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only)PineoblastomaPrimitive Neuroectodermal TumorRecurrent MedulloblastomaRefractory Brain TumorNeuroblastoma. CNSGlioblastoma, IDH-mutantGlioblastoma, IDH-wildtypeMedulloblastoma, Group 3Medulloblastoma, Group 4Glioma, High GradeNeuroepithelial Tumor, High GradeMedulloblastoma, SHH-activated and TP53 MutantMedulloblastoma, SHH-activated and TP53 WildtypeMedulloblastoma, Chromosome 9q LossMedulloblastoma, Non-WNT Non-SHH, NOSMedulloblastoma, Non-WNT/Non-SHHMedulloblastoma, PTCH1 MutationMedulloblastoma, WNT-activatedEpendymoma, RecurrentGlioma, Recurrent High GradeGlioma, Recurrent MalignantEmbryonal Tumor, NOSGlioma, Diffuse Midline, H3K27M-mutantEmbryonal Tumor With Multilayered Rosettes (ETMR)Ependymoma, NOS, WHO Grade IIIEpendymoma, NOS, WHO Grade IIMedulloblastoma, G3/G4Ependymoma, RELA Fusion Positive