Treatment Trials

67 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Pomalidomide in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of pomalidomide in treating younger patients with tumors of the brain or spine (central nervous system) that have come back or are continuing to grow. Pomalidomide may interfere with the ability of tumor cells to grow and spread and may also stimulate the immune system to kill tumor cells.

TERMINATED
Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors
Description

This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

WITHDRAWN
Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors
Description

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

Conditions
Acoustic SchwannomaAdult Anaplastic AstrocytomaAdult Anaplastic EpendymomaAdult Anaplastic MeningiomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Choroid Plexus TumorAdult CraniopharyngiomaAdult Diffuse AstrocytomaAdult EpendymoblastomaAdult EpendymomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Grade I MeningiomaAdult Grade II MeningiomaAdult MedulloblastomaAdult Meningeal HemangiopericytomaAdult Mixed GliomaAdult Myxopapillary EpendymomaAdult OligodendrogliomaAdult Papillary MeningiomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult PineoblastomaAdult PineocytomaAdult Subependymal Giant Cell AstrocytomaAdult SubependymomaAdult Supratentorial Primitive Neuroectodermal Tumor (PNET)Childhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Infratentorial EpendymomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaChildhood MedulloepitheliomaChildhood Supratentorial EpendymomaMeningeal MelanocytomaNewly Diagnosed Childhood EpendymomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood MedulloblastomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilocytic AstrocytomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood PineoblastomaRecurrent Childhood Pleomorphic XanthoastrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood MedulloblastomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilocytic AstrocytomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood PineoblastomaUntreated Childhood Pleomorphic XanthoastrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Supratentorial Primitive Neuroectodermal TumorUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas
Description

To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

Conditions
Adult Anaplastic EpendymomaAdult Anaplastic OligodendrogliomaAdult Brain Stem GliomaAdult Diffuse AstrocytomaAdult Giant Cell GlioblastomaAdult GlioblastomaAdult GliosarcomaAdult Mixed GliomaAdult OligodendrogliomaAdult Pilocytic AstrocytomaAdult Pineal Gland AstrocytomaAdult Subependymal Giant Cell AstrocytomaChildhood High-grade Cerebellar AstrocytomaChildhood High-grade Cerebral AstrocytomaChildhood Low-grade Cerebellar AstrocytomaChildhood Low-grade Cerebral AstrocytomaRecurrent Adult Brain TumorRecurrent Childhood Anaplastic AstrocytomaRecurrent Childhood Anaplastic OligoastrocytomaRecurrent Childhood Anaplastic OligodendrogliomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood Diffuse AstrocytomaRecurrent Childhood Fibrillary AstrocytomaRecurrent Childhood Gemistocytic AstrocytomaRecurrent Childhood Giant Cell GlioblastomaRecurrent Childhood GlioblastomaRecurrent Childhood Gliomatosis CerebriRecurrent Childhood GliosarcomaRecurrent Childhood OligoastrocytomaRecurrent Childhood OligodendrogliomaRecurrent Childhood Pilomyxoid AstrocytomaRecurrent Childhood Protoplasmic AstrocytomaRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaUntreated Childhood Anaplastic AstrocytomaUntreated Childhood Anaplastic OligoastrocytomaUntreated Childhood Anaplastic OligodendrogliomaUntreated Childhood Brain Stem GliomaUntreated Childhood Cerebellar AstrocytomaUntreated Childhood Cerebral AstrocytomaUntreated Childhood Diffuse AstrocytomaUntreated Childhood Fibrillary AstrocytomaUntreated Childhood Gemistocytic AstrocytomaUntreated Childhood Giant Cell GlioblastomaUntreated Childhood GlioblastomaUntreated Childhood Gliomatosis CerebriUntreated Childhood GliosarcomaUntreated Childhood OligoastrocytomaUntreated Childhood OligodendrogliomaUntreated Childhood Pilomyxoid AstrocytomaUntreated Childhood Protoplasmic AstrocytomaUntreated Childhood Subependymal Giant Cell AstrocytomaUntreated Childhood Visual Pathway and Hypothalamic GliomaUntreated Childhood Visual Pathway Glioma
TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

COMPLETED
Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

COMPLETED
Pazopanib Hydrochloride in Treating Young Patients With Solid Tumors That Have Relapsed or Not Responded to Treatment
Description

This phase I trial is studying the side effects and best dose of pazopanib hydrochloride in treating young patients with solid tumors that have relapsed or not responded to treatment. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

COMPLETED
Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor
Description

RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.

COMPLETED
Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma
Description

This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.

COMPLETED
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
Description

This phase I trial is studying the side effects and best dose of oxaliplatin when given together with leucovorin and fluorouracil in treating young patients with advanced solid tumors. Drugs used in chemotherapy, such as oxaliplatin, leucovorin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.

COMPLETED
Oxaliplatin and Irinotecan in Treating Young Patients With Refractory Solid Tumors or Lymphomas
Description

This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.

COMPLETED
Lapatinib in Treating Young Patients With Recurrent or Refractory Central Nervous System Tumors
Description

This phase I/II trial studies lapatinib to see how well it works in treating young patients with recurrent or refractory central nervous system (CNS) tumors. Lapatinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.

COMPLETED
Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma
Description

This phase II trial is studying how well tipifarnib works in treating young patients with recurrent or progressive high-grade glioma, medulloblastoma, primitive neuroectodermal tumor, or brain stem glioma. Tipifarnib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.

RECRUITING
Ex Vivo Drug Sensitivity Testing and Multi-Omics Profiling
Description

Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.

COMPLETED
Ex Vivo Drug Sensitivity Testing and Mutation Profiling
Description

This study is a prospective, non-randomized feasibility study. Freshly isolated tumor cells from patients will be screened using state-of-the-art viability assay designed for ex vivo high-throughput drug sensitivity testing (DST). In addition, genetic information will be obtained from cancer and normal (germline) tissue and correlated with drug response. This study will provide the platform for informing treating physician about individualized treatment options. The main outcome of this study will be the proportions of the patients whose treatment was guided by the personalized medicine approach.

COMPLETED
Imetelstat Sodium in Treating Young Patients With Refractory or Recurrent Solid Tumors or Lymphoma
Description

RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.

COMPLETED
PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors
Description

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

TERMINATED
MK0752 in Treating Young Patients With Recurrent or Refractory CNS Cancer
Description

RATIONALE: MK0752 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of MK0752 in treating young patients with recurrent or refractory CNS cancer.

COMPLETED
Enzastaurin in Treating Young Patients With Refractory Primary CNS Tumors
Description

RATIONALE: Enzastaurin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of enzastaurin in treating young patients with refractory primary brain tumors.

COMPLETED
Iodine I 131 Monoclonal Antibody 3F8 in Treating Patients With Central Nervous System Cancer or Leptomeningeal Cancer
Description

RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.

COMPLETED
Talabostat Combined With Temozolomide or Carboplatin in Treating Young Patients With Relapsed or Refractory Brain Tumors or Other Solid Tumors
Description

RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.