Treatment Trials

120 Clinical Trials for Various Conditions

Focus your search

UNKNOWN
Selecting Patient-Specific Biologically Targeted Therapy for Pediatric Patients With Refractory Or Recurrent Brain Tumors
Description

This research study is a Feasibility clinical trial. In this trial, researchers are trying to figure out whether a medication can be chosen based on rapid testing done on tumor tissue. Information from a feasibility or pilot trial will hopefully help researchers plan larger trials in the future to determine the effect of this therapy.

RECRUITING
Ex Vivo Drug Sensitivity Testing and Multi-Omics Profiling
Description

Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.

COMPLETED
Ex Vivo Drug Sensitivity Testing and Mutation Profiling
Description

This study is a prospective, non-randomized feasibility study. Freshly isolated tumor cells from patients will be screened using state-of-the-art viability assay designed for ex vivo high-throughput drug sensitivity testing (DST). In addition, genetic information will be obtained from cancer and normal (germline) tissue and correlated with drug response. This study will provide the platform for informing treating physician about individualized treatment options. The main outcome of this study will be the proportions of the patients whose treatment was guided by the personalized medicine approach.

COMPLETED
Wild-Type Reovirus in Combination With Sargramostim in Treating Younger Patients With High-Grade Relapsed or Refractory Brain Tumors
Description

This phase I trial studies the side effects and the best dose of wild-type reovirus (viral therapy) when given with sargramostim in treating younger patients with high grade brain tumors that have come back or that have not responded to standard therapy. A virus, called wild-type reovirus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells. Sargramostim may increase the production of blood cells and may promote the tumor cell killing effects of wild-type reovirus. Giving wild-type reovirus together with sargramostim may kill more tumor cells.

COMPLETED
DSC-MRI With Ferumoxytol and DCE-MRI With Gadolinium in Imaging Vascular Properties in Younger Patients With Brain Tumors
Description

This clinical trial studies dynamic susceptibility-weighted contrast enhanced magnetic resonance imaging (DSC-MRI) after administration of ferumoxytol and dynamic contrast-enhanced MRI (DCE-MRI) after administration of a gadolinium-based contrast agent (GBCA) in viewing the vessels of the brain in younger patients with brain tumors. Ferumoxytol is an experimental form of very small iron particles that are taken by the blood stream to cells adjacent and inside the tumor. These iron particles may make it easier to see the areas of the brain that are affected by tumor. Ferumoxytol may work better than standard GBCA in viewing the vessels of the brain and brain tumor on MRI. Using ferumoxytol and GBCA in the same MRI session may provide more information about tumor blood supply and the extent of the tumor.

COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

COMPLETED
Cilengitide in Treating Younger Patients With Recurrent or Progressive High-Grade Glioma That Has Not Responded to Standard Therapy
Description

This phase II trial studies how well cilengitide works in treating younger patients with recurrent or progressive high-grade glioma that has not responded to standard therapy. Cilengitide may stop the growth of tumor cells by blocking blood flow to the tumor.

COMPLETED
Erlotinib and Temozolomide in Treating Young Patients With Recurrent or Refractory Solid Tumors
Description

This phase I trial is studying the side effects and best dose of erlotinib when given with temozolomide in treating young patients with recurrent or refractory solid tumors. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving erlotinib with temozolomide may kill more tumor cells.

TERMINATED
Temsirolimus and Valproic Acid in Treating Young Patients With Relapsed Neuroblastoma, Bone Sarcoma, or Soft Tissue Sarcoma
Description

RATIONALE: Drugs such as temsirolimus and valproic acid may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Valproic acid may also stop the growth of solid tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of temsirolimus when given together with valproic acid in treating young patients with relapsed neuroblastoma, bone sarcoma, or soft tissue sarcoma.

COMPLETED
PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors
Description

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

COMPLETED
Enzastaurin in Treating Young Patients With Refractory Primary CNS Tumors
Description

RATIONALE: Enzastaurin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of enzastaurin in treating young patients with refractory primary brain tumors.

COMPLETED
Talabostat Combined With Temozolomide or Carboplatin in Treating Young Patients With Relapsed or Refractory Brain Tumors or Other Solid Tumors
Description

RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.

COMPLETED
O6-Benzylguanine and Temozolomide in Treating Young Patients With Recurrent or Progressive Gliomas or Brain Stem Tumors
Description

This phase II trial is studying how well giving O6-benzylguanine together with temozolomide works in treating young patients with recurrent or progressive gliomas or brain stem tumors. Drugs used in chemotherapy, such as O6-benzylguanine and temozolomide , work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. O6-benzylguanine may help temozolomide work better by making tumor cells more sensitive to the drug. Giving more than one drug (combination chemotherapy) may kill more tumor cells.

TERMINATED
Acetylcysteine, Mannitol, Combination Chemotherapy, and Sodium Thiosulfate in Treating Children With Malignant Brain Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, etoposide phosphate, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Mannitol may help chemotherapy work better by making it easier for these drugs to get to the tumor. Chemoprotective drugs, such as acetylcysteine and sodium thiosulfate, may protect normal cells from the side effects of chemotherapy. Giving acetylcysteine together with mannitol, combination chemotherapy, and sodium thiosulfate may be an effective treatment for malignant brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of acetylcysteine when given together with mannitol, combination chemotherapy, and sodium thiosulfate in treating children with malignant brain tumors.

COMPLETED
Temozolomide, Vincristine, and Irinotecan in Treating Young Patients With Refractory Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as temozolomide, vincristine, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of irinotecan when given together with temozolomide and vincristine in treating young patients with refractory solid tumors.

COMPLETED
Valproic Acid in Treating Young Patients With Recurrent or Refractory Solid Tumors or CNS Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Valproic acid may also stop the growth of solid tumors or CNS tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of valproic acid in treating patients with recurrent or refractory solid tumors or CNS tumors.

TERMINATED
TP-38 Toxin in Treating Young Patients With Recurrent or Progressive Supratentorial High-Grade Glioma
Description

RATIONALE: The TP-38 toxin can locate tumor cells and kill them without harming normal cells. Giving TP-38 toxin directly into the tumor may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of TP-38 toxin administered directly into the brain and to see how well it works in treating young patients with recurrent or progressive supratentorial high-grade glioma.

COMPLETED
Vaccine Therapy and Sargramostim in Treating Patients With Sarcoma or Brain Tumor
Description

RATIONALE: Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may cause a stronger immune response and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy when given together with sargramostim in treating patients with advanced sarcoma or brain tumor.

COMPLETED
Cyproheptadine and Megestrol in Preventing Weight Loss in Children With Cachexia Caused By Cancer or Cancer Treatment
Description

RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.

COMPLETED
Radiolabeled Octreotide in Treating Children With Advanced or Refractory Solid Tumors
Description

RATIONALE: Radiolabeled octreotide can locate tumor cells and deliver radioactive tumor-killing substances to them without harming normal cells. PURPOSE: This phase I trial is to study the safety and effectiveness of radiolabeled octreotide in treating children who have advanced or refractory solid tumors.

COMPLETED
Temozolomide and O6-benzylguanine in Treating Children With Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining temozolomide and O6-benzylguanine in treating children who have solid tumors that have not responded to previous therapy.

COMPLETED
Liposomal Doxorubicin in Treating Children With Refractory Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of liposomal doxorubicin in treating children who have refractory solid tumors.

COMPLETED
Peripheral Stem Cell Transplantation Plus Chemotherapy in Treating Patients With Malignant Solid Tumors
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of cyclophosphamide when given together with combination chemotherapy and a peripheral stem cell transplant in treating patients with malignant solid tumors.

COMPLETED
Busulfan in Treating Children and Adolescents With Refractory CNS Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the safety of delivering intrathecal busulfan in children and adolescents who have refractory CNS cancer and to estimate the maximum tolerated dose of this treatment regimen.

COMPLETED
Phenylacetate in Treating Children With Recurrent or Progressive Brain Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of phenylacetate in treating children with recurrent or progressive brain tumors.

COMPLETED
Monoclonal Antibody Therapy in Treating Patients With Recurrent Gliomas
Description

RATIONALE: Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I trial to determine the effectiveness of monoclonal antibody in treating patients with recurrent gliomas.