86 Clinical Trials for Various Conditions
The purpose of this study is to evaluate the anti-tumor activity of Everolimus among children with recurrent or progressive ependymoma. Recurrent or progressive ependymoma is incurable and has very limited treatment options. The rationale for this study is based upon both pre-clinical and clinical considerations: Immunohistochemistry studies have demonstrated that 20 out of 23 (87%) pediatric ependymomas are immunoreactive for phosphorylated S6, a biomarker that often predicts response to mTOR pathway-targeted therapy. Furthermore, children with with multiply recurrent ependymomas have had objective and durable responses to the mTOR inhibitor, Sirolimus (Rapamune, Pfizer). As a result of this pre-clinical and clinical data, this study will further investigate the activity of an mTOR pathway inhibitor, Everolimus, against children with recurrent or progressive ependymomas. In this study, Everolimus will be administered at a dose and schedule that have previously been demonstrated as safe and effective in children. Children may take Everolimus for up to 2 years on this study, until tumor progression or unacceptable toxicity.
Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.
This study is a prospective, non-randomized feasibility study. Freshly isolated tumor cells from patients will be screened using state-of-the-art viability assay designed for ex vivo high-throughput drug sensitivity testing (DST). In addition, genetic information will be obtained from cancer and normal (germline) tissue and correlated with drug response. This study will provide the platform for informing treating physician about individualized treatment options. The main outcome of this study will be the proportions of the patients whose treatment was guided by the personalized medicine approach.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
The purpose of this research study is to test an experimental treatment method for recurrent or progressive brain tumors in children aged from 0-22 years. The use of methotrexate and chemotherapy (topotecan and cyclophosphamide) is experimental in this study. This means that their use by themselves or together has not been approved by the U.S. Food and Drug Administration for this usage.
This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body's immune system, and may interfere with the ability of tumor cells to grow and spread.
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
This phase II trial studies how well sunitinib malate works in treating younger patients with recurrent, refractory, or progressive malignant glioma or ependymoma. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.
The purpose of this study is to collect and store brain tissue samples and blood from children with brain cancer that will be tested in the laboratory. Collecting and storing samples of tumor tissue and blood from patients to test in the laboratory may help the study of cancer in the future.
RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.
This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.
This phase I trial is studying the side effects and best dose of ispinesib in treating young patients with relapsed or refractory solid tumors or lymphoma. Drugs used in chemotherapy, such as ispinesib, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
This phase I trial is studying the side effects and best dose of AZD2171 in treating young patients with recurrent, progressive, or refractory primary CNS tumors. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.
This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with recurrent, progressive, or refractory CNS tumors. Lenalidomide may stop the growth of CNS tumors by blocking blood flow to the tumor. It may also stimulate the immune system in different ways and stop tumor cells from growing.
This phase I/II trial studies lapatinib to see how well it works in treating young patients with recurrent or refractory central nervous system (CNS) tumors. Lapatinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.
This phase II trial is studying how well oxaliplatin works in treating young patients with recurrent solid tumors that have not responded to previous treatment. Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop tumor cells from dividing so they stop growing or die.
This phase I trial is studying the side effects and best dose of erlotinib when given with temozolomide in treating young patients with recurrent or refractory solid tumors. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving erlotinib with temozolomide may kill more tumor cells.
This phase I trial is studying the side effects and best dose of cilengitide in treating children with recurrent, progressive, or refractory primary CNS tumors. Cilengitide may slow the growth of brain cancer cells by stopping blood flow to the tumor.
This phase I trial is studying the side effects and best dose of FR901228 in treating children with refractory or recurrent solid tumors or leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die
Phase I trial to study the safety of combining O6-benzylguanine with temozolomide in treating children who have recurrent or refractory brain tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. O6-benzylguanine may increase the effectiveness of temozolomide by making tumor cells more sensitive to the drug.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of flavopiridol in treating children who have relapsed or refractory solid tumors or lymphoma.
This phase II trial is studying irinotecan to see how well it works in treating children with refractory solid tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die.