483 Clinical Trials for Various Conditions
To learn if the drug combination pirtobrutinib, venetoclax, and obinutuzumab can help to control relapsed CLL/SLL.
This phase I trial tests zanubrutinib in combination with sonrotoclax for treating underrepresented ethnic and racial minorities with B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Many racial and ethnic minorities face additional treatment challenges which may lead to poorer outcomes, however, there are fewer racial and ethnic minorities participating in clinical trials. Zanubrutinib, a type of tyrosine kinase inhibitor, blocks a protein called Bruton tyrosine kinase (BTK), which may help keep cancer cells from growing. Sonrotoclax works by blocking a protein called B-cell lymphoma-2 (Bcl-2). This protein helps certain types of blood cancer cells to survive and grow. When sonrotoclax blocks Bcl-2, it slows down or stops the growth of cancer cells and causes them to die. Zanubrutinib and sonrotoclax have been shown to be an effective treatment for B-cell cancers. Giving zanubrutinib in combination with sonrotoclax may be effective in treating ethnic and racial minorities with relapsed or refractory B-cell non-Hodgkin lymphoma.
This phase II trial studies how well daratumumab and ibrutinib work in treating patients with chronic lymphocytic leukemia that has come back (relapsed) or has not responded to previous treatment (refractory). Daratumumab is a monoclonal antibody which works with the body's immune system to destroy cancer cells. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving daratumumab and ibrutinib may work better in treating patients with chronic lymphocytic leukemia compared to ibrutinib alone.
This pilot phase I trial studies the side effects of engineered donor stem cell transplant in treating patients with hematologic malignancies. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Using T cells specially selected from donor blood in the laboratory for transplant may stop this from happening.
This phase II trial is to evaluate the effects of acalabrutinib in combination with venetoclax in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma that does not respond to treatment (refractory) or that has come back (recurrent). Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Given acalabrutinib and venetoclax may kill more cancer cells.
RATIONALE: Everolimus may stop the growth of cancer cells by blocking some of the signaling molecules needed for cell growth. Monoclonal antibodies, such as alemtuzumab, can bind to and kill malignant lymphocytes. PURPOSE: This phase I/II trial is studying the side effects and best dose of everolimus when given together with alemtuzumab and will see how well they work in treating patients with recurrent chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL).
This phase II trial studies how well acalabrutinib and venetoclax with or without early obinutuzumab work for the treatment of chronic lymphocytic leukemia or small lymphocytic lymphoma that is high risk, has come back (recurrent), or does not respond to treatment (refractory). Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Venetoclax may stop the growth cancer cells by blocking BCL-2 protein needed for cell growth. Immunotherapy with monoclonal antibodies, such as obinutuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving acalabrutinib and venetoclax together with early obinutuzumab may improve clinical outcomes and control the disease.
This phase II trial studies how well duvelisib on an intermittent (irregular) dosing schedule works in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. Duvelisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving duvelisib on an intermittent schedule may result in similar effectiveness with less amount of severe side effects.
This is an open-label non-randomized two-center phase 2 study evaluating the safety and efficacy of concurrent therapy with ibrutinib and venetoclax in subjects with relapsed or refractory CLL/SLL.
This phase I trial studies the side effects and best dose of buparlisib when given together with ofatumumab or ibrutinib in treating patients with chronic lymphocytic leukemia that has returned after a period of improvement or does not respond to treatment. Buparlisib and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as ofatumumab, may block cancer growth in different ways by targeting certain cells. Giving buparlisib or ibrutinib and ofatumumab together may work better in treating patients with chronic lymphocytic leukemia.
This phase II trial studies how well lenalidomide and obinutuzumab work in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide and obinutuzumab may work better in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma.
This phase I trial studies the side effects and best dose of lenalidomide when given together with ibrutinib and rituximab in treating patients with chronic lymphocytic leukemia or small lymphocytic lymphoma that has come back (relapsed), has not responded well to prior treatments (refractory), has spread to other parts of the body (metastatic), or cannot be removed by surgery. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide together with ibrutinib and rituximab may kill more cancer cells.
This phase I trial is studying the side effects and best dose of alemtuzumab when given together with bendamustine hydrochloride in treating patients with relapsed chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) that did not respond to fludarabine phosphate. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as alemtuzumab, can also block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving bendamustine hydrochloride together with alemtuzumab may kill more cancer cells.
This randomized phase II trial is studying thalidomide and fludarabine to see how well they work compared to thalidomide alone in treating patients with hematologic cancer that has not responded to previous treatment with fludarabine. Thalidomide may stop the growth of hematologic cancer by stopping blood flow to the cancer. Combining thalidomide with fludarabine may increase the effectiveness of chemotherapy by making cancer cells more sensitive to the drug. It is not yet known whether thalidomide is more effective with or without fludarabine for hematologic cancer.
This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.
This phase II trial studies how well nivolumab works for the treatment of hematological malignancies that have come back (relapsed), does not respond (refractory), or is detectable after CAR T cell therapy. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase II trial studies the side effects of an escalated ramp-up of sonrotoclax following initial debulking with zanubrutinib or rituximab in treating patients with chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), and mantle cell lymphoma (MCL) that is newly diagnosed, has come back after a period of improvement (relapsed) or does not respond to treatment (refractory). Rituximab is a monoclonal antibody that binds to a protein called CD20, which is found on B-cells, and may kill tumor cells. Zanubrutinib may stop the growth of tumor cells by blocking a protein called Bruton's tyrosine kinase (BTK), which is needed for tumor cell growth. Sonrotoclax works by blocking a protein called B-cell lymphoma-2 (BCL-2). This protein helps certain types of blood tumor cells to survive and grow. When sonrotoclax blocks Bcl-2 it slows down or stops the growth of tumor cells and helps them die. Giving an increased dose of sonrotoclax over a shorter period of time in combination with zanubrutinib or rituximab may be safe and tolerable in treating patients with newly diagnosed, relapsed or refractory CLL, SLL, and MCL.
This phase I trial tests the safety, side effects, and best dose of Q702 in treating patients with hematologic malignancies. Q702 is in a class of medications called immunomodulatory agents. It works by helping the immune system kill cancer cells and by helping the bone marrow to produce normal blood cells. Giving Q702 may be safe, tolerable and/or effective in treating patients with hematologic malignancies.
This phase I trial tests safety, side effects and best dose of B-cell activating factor receptor (BAFFR)-based chimeric antigen receptor T-cells, with fludarabine and cyclophosphamide lymphodepletion, for the treatment of patients with B-cell hematologic malignancies that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). BAFFR-based chimeric antigen receptor T-cells is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving chemotherapy, such as fludarabine and cyclophosphamide, helps ill cancer cells in the body and helps prepare the body to receive the BAFFR based chimeric antigen receptor T-cells. Giving BAFFR based chimeric antigen receptor T-cells with fludarabine and cyclophosphamide for lymphodepletion may work better for the treatment of patients with relapsed or refractory B-cell hematologic malignancies.
This phase I trial studies the effects of CD-19 directed chimeric antigen receptor (CAR)-T cell therapy for the treatment of patients with B cell malignancies that have come back (recurrent) or have not responded to treatment (refractory). CD-19 CAR-T cells use some of a patient's own immune cells, called T cells, to kill cancer. T cells fight infections and, in some cases, can also kill cancer cells. Some T cells are removed from the blood, and then laboratory, researchers will put a new gene into the T cells. This gene allows the T cells to recognize and possibly treat cancer. The new modified T cells are called the IC19/1563 treatment. IC19/1563 may help treat patients with relapsed/refractory B cell malignancies.
This phase I/Ib trial evaluates the best dose and side effects of ipilimumab in combination with either ibrutinib alone or with ibrutinib and nivolumab in treating patients with chronic lymphocytic leukemia (CLL) and Richter transformation (RT). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving ipilimumab with either ibrutinib alone or with ibrutinib and nivolumab may help control CLL and RT.
This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.
This phase I trial studies the side effects and best dose of CD19/CD20 chimeric antigen receptor (CAR) T-cells when given together with chemotherapy, and to see how effective they are in treating patients with non-Hodgkin's B-cell lymphoma or chronic lymphocytic leukemia that has come back (recurrent) or has not responded to treatment (refractory). In CAR-T cell therapy, a patient's white blood cells (T cells) are changed in the laboratory to produce an engineered receptor that allows the T cell to recognize and respond to CD19 and CD20 proteins. CD19 and CD20 are commonly found on non-Hodgkin?s B-cell lymphoma and chronic lymphocytic leukemia cells. Chemotherapy drugs such as fludarabine phosphate and cyclophosphamide can control cancer cells by killing them, by preventing their growth, or by stopping them from spreading. Combining CD19/CD20 CAR-T cells and chemotherapy may help treat patients with recurrent or refractory B-cell lymphoma or chronic lymphocytic leukemia.
This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.
This phase I trial investigates the side effects and best dose of CD19 positive (+) specific CAR-T cells in treating patients with CD19+ lymphoid malignancies, such as acute lymphoblastic leukemia, non-Hodgkin lymphoma, small lymphocytic lymphoma, or chronic lymphocytic lymphoma. Sometimes researchers change the genetic material in the cells of a patient's T cells using a process called gene transfer. Researchers then inject the changed T-cells into the patient's body. Receiving the T-cell infusion may help to control the disease.
This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
The purpose of this research is to find the best dose of genetically modified T-cells, to study the safety of this treatment, and to see how well it works in treating patients with B cell non-Hodgkin lymphoma that has come back (relapsed) or did not respond to previous treatment (refractory).
This randomized phase II trial includes a blood stem cell transplant from an unrelated donor to treat blood cancer. The treatment also includes chemotherapy drugs, but in lower doses than conventional (standard) stem cell transplants. The researchers will compare two different drug combinations used to reduce the risk of a common but serious complication called "graft versus host disease" (GVHD) following the transplant. Two drugs, cyclosporine (CSP) and sirolimus (SIR), will be combined with either mycophenolate mofetil (MMF) or post-transplant cyclophosphamide (PTCy). This part of the transplant procedure is the main research focus of the study.
This phase I/II trial studies the side effect and best dose of entospletinib when giving together with obinutuzumab and to see how well they work in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma that has come back. Entospletinib may stop the growth of cancer cells by blocking some of the enzymes need for cell growth. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Giving entospletinib and obinutuzumab together may work better in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma.
This research trial studies the mechanisms of idelalisib-associated diarrhea in patients with chronic lymphocytic leukemia, indolent non-hodgkin lymphoma, or small lymphocytic lymphoma that has come back after a period of improvement. The cancer treatment drug idelalisib triggers diarrhea in some patients. Studying stool, blood, and tissue samples in the lab from patients who are given idelalisib may help doctors learn more about the side effects and may help to treat them in future patients.