306 Clinical Trials for Various Conditions
This phase I trial studies the side effects and best dose of cetuximab when given together with everolimus in treating patients with metastatic or recurrent colon cancer or head and neck cancer. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of the tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cetuximab together with everolimus may be an effective treatment for colon cancer or head and neck cancer
The goal of this study is to compare the effects of exercise with the effects of relaxation training on physical function (how well participants perform normal daily activities) and symptoms related to your cancer diagnosis (such as tiredness, pain, and nausea).
This phase I trial studies the side effects and best dose of MEK inhibitor MEK162 when given together with leucovorin calcium, fluorouracil, and oxaliplatin in treating patients with advanced metastatic colorectal cancer. MEK inhibitor MEK162 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162 with leucovorin calcium, fluorouracil, and oxaliplatin may kill more tumor cells.
This pilot clinical trial studies short-infusion ziv-aflibercept in treating patients with metastatic colorectal cancer receiving combination chemotherapy. Ziv-aflibercept may stop the growth of colorectal cancer by blocking blood flow to the tumor. Giving the drug over a shorter infusion time may result in improved efficiency and patient satisfaction.
This pilot phase II studies how well computed tomography (CT) and positron emission tomography (PET) imaging works in detecting disease in patients undergoing surgery for metastatic colorectal cancer. Diagnostic procedures, such as CT and PET scans, done before and during surgery may help find colorectal cancer and help guide surgery
This pilot clinical trial studies positron emission tomography (PET)-magnetic resonance imaging (MRI) and PET-computed tomography (CT) as diagnostic imaging in patients with colon and/or rectal cancer. New diagnostic imaging procedures, such as PET-MRI, may help find and diagnose rectal cancer or recurrence of colorectal cancer
This phase II trial studies how well capecitabine and celecoxib with or without radiation therapy works in treating patients with colorectal cancer that is newly diagnosed or has been previously treated with fluorouracil, and has spread to other parts of the body (metastatic). Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Celecoxib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving capecitabine and celecoxib together with radiation therapy may kill more tumor cells.
This phase I trial studies the side effects and best dose of sorafenib tosylate when given together with bevacizumab, irinotecan hydrochloride, leucovorin calcium, and fluorouracil in treating patients with colorectal cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as irinotecan hydrochloride, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Sorafenib tosylate and bevacizumab may also block tumor growth in different ways by targeting certain cells. Giving sorafenib tosylate and bevacizumab together with combination chemotherapy may be a better treatment for colorectal cancer.
This phase II trial studies how well Linifanib works in treating patients with advanced, refractory colorectal cancer expressing k-Ras mutations. Linifanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The study will determine the maximum tolerated dose (MTD) of AUY922 given in combination with cetuximab in previously treated patients with KRAS wild-type metastatic colorectal cancer.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
Panobinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil and leucovorin calcium, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving panobinostat together with fluorouracil and leucovorin calcium may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and the best dose of giving panobinostat, fluorouracil, and leucovorin calcium together in treating patients with stage IV colorectal cancer who did not respond to previous fluorouracil-based chemotherapy.
This phase I trial is studying the side effects and the best dose of MEK Inhibitor AZD6244 when given together with cetuximab in patients with advanced or refractory solid tumors that cannot be removed by surgery. MEK inhibitor AZD6244 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving MEK Inhibitor AZD6244 together with cetuximab may kill more tumor cells.
RATIONALE: Radiolabeled monoclonal antibodies can find tumor cells and either kill them or carry tumor-killing substances to them without harming normal cells. Giving radioactive substances together with antibodies may be effective treatment for some advanced cancers. Drugs used in chemotherapy, such as irinotecan hydrochloride, fluorouracil, and leucovorin calcium (FOLFIRI), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving radiolabeled monoclonal antibodies together with combination chemotherapy and bevacizumab may be an effective treatment for colorectal cancer. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of yttrium Y 90 DOTA anti-CEA (Carcinoembryonic antigen) monoclonal antibody M5A when given together with combination chemotherapy and bevacizumab in treating patients with metastatic colorectal cancer.
RATIONALE: Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients with colorectal, stomach, or pancreatic cancer.
This phase II trial studies how well RO4929097 works in treating patients with metastatic colorectal cancer. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial is studying how well giving azacitidine together with entinostat works in treating patients with metastatic colorectal cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Entinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with entinostat may kill more tumor cells.
This phase II trial is studying how well giving sorafenib together with bevacizumab works in treating patients with metastatic colorectal cancer. Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib and bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving sorafenib together with bevacizumab may kill more tumor cells
This phase II trial is studying dasatinib to see how well it works in treating patients with previously treated metastatic colorectal cancer. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth.
This randomized phase III trial is studying giving irinotecan and cetuximab together with bevacizumab to see how well it works compared with giving irinotecan and cetuximab alone in treating patients with metastatic colorectal cancer that progressed during first-line therapy. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab and bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether irinotecan and cetuximab are more effective with or without bevacizumab in treating metastatic colorectal cancer.
This phase I trial is studying the side effects and best dose of suberoylanilide hydroxamic acid when given together with fluorouracil, leucovorin, and oxaliplatin in treating patients with progressive metastatic or unresectable colorectal cancer or solid tumor. Drugs used in chemotherapy, such as suberoylanilide hydroxamic acid, fluorouracil, leucovorin, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Suberoylanilide hydroxamic acid may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
This phase I/II trial is studying the side effects and best dose of sorafenib when given together with cetuximab and irinotecan and to see how well they work in treating patients with advanced or metastatic colorectal cancer. Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib and cetuximab may also stop tumor growth by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to kill tumor cells, either by killing the cells or by stopping them from dividing. Giving sorafenib together with cetuximab and irinotecan may kill more tumor cells
This randomized phase II trial is studying how well SB-715992 works in treating patients with advanced or metastatic colorectal cancer. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This phase I trial is studying the side effects and best dose of capecitabine when given together with GTI-2040 and oxaliplatin in treating patients with locally advanced or metastatic colorectal cancer or other solid tumors. Drugs used in chemotherapy, such as oxaliplatin and capecitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. GTI-2040 may increase the effectiveness of chemotherapy by making tumor cells more sensitive to the drugs. Giving GTI-2040 together with oxaliplatin and capecitabine may kill more tumor cells
This randomized phase II trial is studying giving bevacizumab and cetuximab together with irinotecan to see how well it works compared to giving bevacizumab and cetuximab alone in treating patients with irinotecan-refractory metastatic colorectal cancer. Monoclonal antibodies such as cetuximab and bevacizumab can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or deliver tumor -killing substances to them. Drugs used in chemotherapy, such as irinotecan, also work in different ways to kill tumor cells or stop them from growing. Giving cetuximab and bevacizumab together with irinotecan may improve the ability to block tumor growth.
Phase II trial to study the effectiveness of imatinib mesylate in treating patients who have stage IV colorectal cancer. Imatinib mesylate may interfere with the growth of tumor cells by blocking certain enzymes necessary for cancer cell growth
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug and giving them in different ways may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of melphalan given as an isolated hepatic perfusion followed by chemotherapy infused into the liver in patients who have unresectable colorectal cancer that is metastatic to the liver.
RATIONALE: Vaccines made from mutated ras peptides may make the body build an immune response to and kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of a vaccine containing mutated ras peptides and an immune adjuvant in treating patients who have colon, pancreatic, or lung cancer.
This phase II trial studies how well TAS-102 and oxaliplatin work in treating patients with stage IV colon cancer. Drugs used in chemotherapy, such as TAS-102 and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This early phase I trial studies how well heated intra-peritoneal chemotherapy with doxorubicin and cisplatin work for the treatment of abdominal or pelvic tumors that can be removed by surgery (resectable), does not respond to treatment (refractory), or has come back (recurrent). Heated intra-peritoneal chemotherapy is a procedure performed in combination with abdominal surgery for cancer that has spread to the abdomen. It involves the infusion of a heated chemotherapy solution that circulates into the abdominal cavity. Chemotherapy drugs, such as doxorubicin and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Heating a chemotherapy solution and infusing it directly into the abdomen may kill more cells.