278 Clinical Trials for Various Conditions
The purpose of this trial is to assess the efficacy of E7777 in participants with recurrent or persistent Cutaneous T-Cell Lymphoma (CTCL) in Stage I - III participants as assessed by objective response rate (ORR). A lead-in dose-finding part was used to determine dose level 9 microgram per kilogram (mcg/kg) E7777 that is being used to test efficacy and safety.
This phase I trial studies the side effects and best dose of silicon phthalocyanine 4 and photodynamic therapy in treating patients with stage IA-IIA cutaneous T-cell non-Hodgkin lymphoma. Photodynamic therapy (PDT) uses a drug, silicon phthalocyanine 4, that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against cutaneous T-cell non-Hodgkin lymphoma. Funding Source - FDA OOPD
This randomized phase I trial studies the side effects and the best dose of carfilzomib when given together with or without romidepsin in treating patients with stage IA-IVB cutaneous T-cell lymphoma. Carfilzomib and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether giving carfilzomib alone is more effective than when given together with romidepsin.
Phase I/II trial to study the effectiveness of combining interleukin-12 with interleukin-2 in treating patients who have mycosis fungoides. Biological therapies, such as interleukin-12 and interleukin-2, use different ways to stimulate the immune system and stop cancer cells from growing. Combining more than one biological therapy may kill more tumor cells
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase II trial to study the effectiveness of 506U78 in treating patients who have recurrent or refractory cutaneous T-cell lymphoma
This phase I trial is studying the side effects and best dose of carmustine given together with O(6)-benzylguanine in treating patients with stage I or stage II cutaneous T-cell lymphoma that has not responded to previous treatment. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells
This phase I trial tests the safety, side effects, and best dose of combination therapy with tazemetostat and belinostat in treating patients with lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Tazemetostat is in a class of medications called EZH2 inhibitors. The EZH2 gene provides instructions for making a type of enzyme called histone methyltransferase which is involved in gene expression and cell division. Blocking EZH2 may help keep cancer cells from growing. Belinostat is in a class of medications called histone deacetylase inhibitors. Histone deacetylases are enzymes needed for cell division. Belinostat may kill cancer cells by blocking histone deacetylase. It may also prevent the growth of new blood vessels that tumors need to grow and may help make cancer cells easier to kill with other anticancer drugs. There is some evidence in animals and in living human cells that combination therapy with tazemetostat and belinostat can shrink or stabilize cancer, but it is not known whether this will happen in people. This trial may help doctors learn more about treatment of patients with relapsed or refractory lymphoma.
This phase I trial finds the appropriate parsaclisib dose level in combination with romidepsin for the treatment of T-cell lymphomas that have come back (relapsed) or that have not responded to standard treatment (refractory). The other goals of this trial are to find the proportion of patients whose cancer is put into complete remission or significantly reduced by romidepsin and parsaclisib, and to measure the effectiveness of romidepsin and parsaclisib in terms of patient survival. Romidepsin blocks certain enzymes (histone deacetylases) and acts by stopping cancer cells from dividing. Parsaclisib is a PI3K inhibitor. The PI3K pathway promotes cancer cell proliferation, growth, and survival. Parsaclisib, thus, may stop the growth of cancer cells by blocking PI3K enzymes needed for cell growth. Giving romidepsin and parsaclisib in combination may work better in treating relapsed or refractory T-cell lymphomas compared to either drug alone.
This pilot phase I trial studies the side effects of direct tumor microinjection and fludeoxyglucose F-18 positron emission tomography (FDG-PET) in testing drug sensitivity in patients with non-Hodgkin lymphoma, Hodgkin lymphoma, or stage IV breast cancer that has returned after a period of improvement or does not respond to treatment. Injecting tiny amounts of anti-cancer drugs directly into tumors on the skin or in lymph nodes and diagnostic procedures, such as FDG-PET, may help to show which drugs work better in treating patients with non-Hodgkin lymphoma, Hodgkin lymphoma, or breast cancer.
This phase II trial studies how well brentuximab vedotin and lenalidomide work in treating patients with stage IB-IVB T-cell lymphoma that have come back or do not respond to treatment. Monoclonal antibodies, such as brentuximab vedotin, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin and lenalidomide may work better in treating patients with T-cell lymphoma.
This phase I trial studies the side effects and best dose of lenalidomide when given together with brentuximab vedotin in treating patients with T-cell lymphomas that have come back or do not respond to treatment. Monoclonal antibodies, such as brentuximab vedotin, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin and lenalidomide may work better in treating patients with T-cell lymphomas.
This phase I/II trial studies the side effects of pembrolizumab and romidepsin and to see how well they work in treating participants with peripheral T-cell lymphoma that has come back or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and romidepsin may work better than pembrolizumab alone in treating participants with recurrent or refractory peripheral T-cell lymphoma.
This phase I trial studies the best dose and side effects of the VSV-hIFNβ-NIS vaccine with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab in treating patients with multiple myeloma, acute myeloid leukemia or lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). VSV-IFNβ-NIS is a modified version of the vesicular stomatitis virus (also called VSV). This virus can cause infection and when it does it typically infects pigs, cattle, or horses but not humans. The VSV used in this study has been altered by having two extra genes (pieces of DNA) added. The first gene makes a protein called NIS that is inserted into the VSV. NIS is normally found in the thyroid gland (a small gland in the neck) and helps the body concentrate iodine. Having this additional gene will make it possible to track where the virus goes in the body (which organs). The second addition is a gene for human interferon beta (β) or hIFNβ. Interferon is a natural anti-viral protein, intended to protect normal healthy cells from becoming infected with the virus. VSV is very sensitive to the effect of interferon. Many tumor cells have lost the capacity to either produce or respond to interferon. Thus, interferon production by tumor cells infected with VSV-IFNβ-NIS will protect normal cells but not the tumor cells. The VSV with these two extra pieces is referred to as VSV-IFNβ-NIS. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Immunotherapy with monoclonal antibodies, such as ipilimumab, nivolumab, and cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving VSV-IFNβ-NIS with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab may be safe and effective in treating patients with recurrent peripheral T-cell lymphoma.
This randomized phase I/II trial studies the best dose and side effects of durvalumab and to see how well it works with or without lenalidomide in treating patients with cutaneous or peripheral T cell lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as durvalumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving durvalumab and lenalidomide may work better in treating patients with cutaneous or peripheral T cell lymphoma.
This phase I trial studies the side effects and best dose of anti-inducible T-cell co-stimulator (ICOS) monoclonal antibody MEDI-570 in treating patients with peripheral T-cell lymphoma follicular variant or angioimmunoblastic T-cell lymphoma that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as anti-ICOS monoclonal antibody MEDI-570, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies the side effects and best dose of yttrium Y 90 basiliximab when given together with standard combination chemotherapy before a stem cell transplant in treating patients with mature T-cell non-Hodgkin lymphoma. Radioactive substances linked to monoclonal antibodies, such as yttrium Y 90 basiliximab, can bind to cancer cells and give off radiation which may help kill cancer cells. Drugs used in chemotherapy, such as carmustine, cytarabine, etoposide, and melphalan (BEAM), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving yttrium Y 90 basiliximab and chemotherapy before a stem cell transplant may help kill any cancer cells that are in the body and help make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Stem cells that were collected from the patient's blood and stored before treatment are later returned to the patient to replace the blood-forming cells that were destroyed.
This phase I trial studies the side effects and best dose of CPI-613 when given together with bendamustine hydrochloride in treating patients with relapsed or refractory T-cell non-Hodgkin lymphoma or Hodgkin lymphoma. CPI-613 may kill cancer cells by turning off their mitochondria, which are used by cancer cells to produce energy and are the building blocks needed to make more cancer cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies needed to survive and grow. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with bendamustine hydrochloride may kill more cancer cells.
This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.
This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.
The purpose of this study is to evaluate how safe and effective the combination of two different drugs (brentuximab vedotin and rituximab) is in patients with certain types of lymphoma. This study is for patients who have a type of lymphoma that expresses a tumor marker called CD30 and/or a type that is associated with the Epstein-Barr virus (EBV-related lymphoma) and who have not yet received any treatment for their cancer, except for dose-reduction or discontinuation (stoppage) of medications used to prevent rejection of transplanted organs (for those patients who have undergone transplantation). This study is investigating the combination of brentuximab vedotin and rituximab as a first treatment for lymphoma patients
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This pilot phase 1-2 trial studies the side effects and best of dose ipilimumab when given together with local radiation therapy and to see how well it works in treating patients with recurrent melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. Monoclonal antibodies, such as ipilimumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiation therapy uses high energy x rays to kill cancer cells. Giving monoclonal antibody therapy together with radiation therapy may be an effective treatment for melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. * The phase 1 component ("safety") of this study is ipilimumab 25 mg monotherapy. * The phase 2 component ("treatment-escalation") of this study is ipilimumab 25 mg plus radiation combination therapy.
This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them
This phase I trial studies the side effects and best dose of monoclonal antibody therapy before stem cell transplant in treating patients with relapsed or refractory lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium-90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving radiolabeled monoclonal antibody before a stem cell transplant may be an effective treatment for relapsed or refractory lymphoid malignancies.
This phase I trial is studying the side effects and best dose of methoxyamine when given together with fludarabine phosphate in treating patients with relapsed or refractory hematologic malignancies. Drugs used in chemotherapy, such as methoxyamine and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving methoxyamine together with fludarabine phosphate may kill more cancer cells.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening