Treatment Trials

81 Clinical Trials for Various Conditions

Focus your search

COMPLETED
IMC-A12 in Treating Young Patients With Relapsed or Refractory Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor or Other Solid Tumor
Description

This phase I clinical trial is studying the side effects and best dose of IMC-A12 in treating young patients with relapsed or refractory Ewing sarcoma/peripheral primitive neuroectodermal tumor or other solid tumors. Monoclonal antibodies, such as IMC-A12, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them.

COMPLETED
Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.

ACTIVE_NOT_RECRUITING
Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)
Description

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.

COMPLETED
Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas
Description

This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

COMPLETED
Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies
Description

This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.

WITHDRAWN
Whole-Body Radiation Therapy, Systemic Chemotherapy, and High-Dose Chemotherapy Followed By Stem Cell Rescue in Treating Patients With Poor-Risk Ewing Sarcoma
Description

This pilot clinical trial studies whole-body radiation therapy, systemic chemotherapy, and high-dose chemotherapy followed by stem cell rescue in treating patients with poor-risk Ewing sarcoma. Giving chemotherapy and radiation therapy before a peripheral blood stem cell or bone marrow transplant stops the growth of tumor cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is given to prepare the bone marrow for stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy

COMPLETED
Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma
Description

This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.

COMPLETED
Intensity-Modulated Radiation Therapy in Treating Younger Patients With Lung Metastases
Description

This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.

COMPLETED
Alisertib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Leukemia
Description

This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Vismodegib and Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced or Metastatic Sarcoma
Description

This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.

COMPLETED
Collecting and Storing Biological Samples From Patients With Ewing Sarcoma
Description

This research study is collecting and storing samples of tumor tissue, bone marrow, and blood from patients with Ewing sarcoma. Collecting and storing samples of tumor tissue, bone marrow, and blood from patients with cancer to test in the laboratory may help the study of cancer in the future.

COMPLETED
Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor
Description

RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.

COMPLETED
High-Dose Chemotherapy With or Without Total-Body Irradiation Followed by Autologous Stem Cell Transplant in Treating Patients With Hematologic Cancer or Solid Tumors
Description

This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaEwing Sarcoma/Peripheral Primitive Neuroectodermal Tumor (PNET)Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaPeripheral T-cell LymphomaPlasma Cell NeoplasmPrimary Systemic AmyloidosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal TumorRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent NeuroblastomaRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Multiple MyelomaRegional NeuroblastomaSplenic Marginal Zone LymphomaTesticular LymphomaUnspecified Adult Solid Tumor, Protocol SpecificUnspecified Childhood Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
COMPLETED
Vincristine Sulfate, Topotecan Hydrochloride, and Cyclophosphamide With or Without Bevacizumab in Treating Young Patients With Refractory or First Recurrent Extracranial Ewing Sarcoma
Description

This phase II trial study has a 6-patient feasibility portion studying the tolerability of chemotherapy with vincristine sulfate together with topotecan hydrochloride, cyclophosphamide, and bevacizumab in treating young patients with refractory or first recurrent extracranial Ewing's sarcoma. If the therapy is considered tolerable, this feasibility run-in will be followed by a randomized phase II portion studying giving vincristine sulfate together with topotecan hydrochloride, and cyclophosphamide to see how well it works compared with giving vincristine sulfate together with topotecan hydrochloride, cyclophosphamide, and bevacizumab in treating young patients with refractory or first recurrent extracranial Ewing's sarcoma. Drugs used in chemotherapy, such as vincristine sulfate, topotecan hydrochloride, and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop tumor growth by blocking blood flow to the tumor. Giving combination chemotherapy together with bevacizumab may kill more tumor cells.

COMPLETED
Ixabepilone in Treating Young Patients With Refractory Solid Tumors
Description

This phase II trial is studying how well ixabepilone works in treating young patients with refractory solid tumors. Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

COMPLETED
Sorafenib in Treating Patients With Soft Tissue Sarcomas (Extremity Sarcoma Closed to Entry as of 5/30/07)
Description

This phase II trial is studying how well sorafenib works in treating patients with soft tissue sarcoma. Sorafenib may stop the growth of soft tissue sarcoma by blocking blood flow to the tumor and blocking some of the enzymes needed for tumor cell growth

COMPLETED
Oxaliplatin and Irinotecan in Treating Young Patients With Refractory Solid Tumors or Lymphomas
Description

This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.

COMPLETED
Tanespimycin in Treating Young Patients With Recurrent or Refractory Leukemia or Solid Tumors
Description

This phase I trial is studying the side effects and best dose of tanespimycin in treating young patients with recurrent or refractory leukemia or selected solid tumors. Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die.

COMPLETED
Diagnostic Study of Tumor Characteristics in Patients With Ewing's Sarcoma
Description

Diagnostic trial to study genetic differences in patients who have Ewing's sarcoma. Genetic testing may help predict how cancer will respond to treatment and allow doctors to plan more effective therapy.

COMPLETED
Imatinib Mesylate in Treating Patients With Relapsed or Refractory Solid Tumors of Childhood
Description

Phase II trial to study the effectiveness of imatinib mesylate in treating patients who have relapsed or refractory solid tumors of childhood. Imatinib mesylate may stop the growth of tumor cells by blocking the enzymes necessary for their growth.

COMPLETED
17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Advanced Epithelial Cancer, Malignant Lymphoma, or Sarcoma
Description

Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin in treating patients with advanced epithelial cancer, malignant lymphoma, or sarcoma

Conditions
AIDS-related Peripheral/Systemic LymphomaAIDS-related Primary CNS LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChondrosarcomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueIntraocular LymphomaMetastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal TumorMetastatic OsteosarcomaNodal Marginal Zone B-cell LymphomaOvarian SarcomaPrimary Central Nervous System Non-Hodgkin LymphomaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult Soft Tissue SarcomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal TumorRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent OsteosarcomaRecurrent Small Lymphocytic LymphomaRecurrent Uterine SarcomaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult Soft Tissue SarcomaStage IV Adult T-cell Leukemia/LymphomaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Mycosis Fungoides/Sezary SyndromeStage IV Small Lymphocytic LymphomaStage IV Uterine SarcomaUnspecified Adult Solid Tumor, Protocol Specific
TERMINATED
Temsirolimus and Valproic Acid in Treating Young Patients With Relapsed Neuroblastoma, Bone Sarcoma, or Soft Tissue Sarcoma
Description

RATIONALE: Drugs such as temsirolimus and valproic acid may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Valproic acid may also stop the growth of solid tumors by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of temsirolimus when given together with valproic acid in treating young patients with relapsed neuroblastoma, bone sarcoma, or soft tissue sarcoma.

TERMINATED
Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors
Description

RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.

TERMINATED
MT2004-30: Tomotherapy for Solid Tumors
Description

RATIONALE: A peripheral blood stem cell transplant or bone marrow transplant using stem cells from the patient may be able to replace immune cells that were destroyed by chemotherapy and image-guided intensity-modulated radiation therapy used to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of bone marrow radiation therapy followed by an autologous stem cell transplant in treating patients with high-risk or relapsed solid tumors.

COMPLETED
AMG-479 in Treating Patients With Advanced Solid Tumors or Non-Hodgkin Lymphoma
Description

RATIONALE: Monoclonal antibodies, such as AMG-479, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of AMG-479 in treating patients with advanced solid tumors or non-Hodgkin lymphoma.