63 Clinical Trials for Various Conditions
This phase I trial tests the safety, side effects, and best dose of imetelstat in combination with fludarabine and cytarabine in treating patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) or juvenile myelomonocytic leukemia (JMML) that has not responded to previous treatment (refractory) or that has come back after a period of improvement (recurrent). Imetelstat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imetelstat in combination with fludarabine and cytarabine may work better in treating patients with refractory or recurrent AML, MDS, and JMML.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening
This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.
This randomized phase III trial is studying how well Caphosol rinse works in preventing mucositis in young patients undergoing autologous or donor stem cell transplant. Supersaturated calcium phosphate (Caphosol) rinse may be able to prevent mucositis, or mouth sores, in patients undergoing stem cell transplant.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.
This randomized phase III trial is studying donor bone marrow transplant with or without G-CSF to compare how well they work in treating young patients with hematologic cancer or other diseases. Giving chemotherapy and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate and tacrolimus or cyclosporine before and after transplant may stop this from happening. It is not yet known whether donor bone marrow transplant is more effective with or without G-CSF in treating hematologic cancer or other diseases.
RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.
This phase II trial is studying how well etanercept works in treating young patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant. Etanercept may be effective in treating patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant.
This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.
This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.
This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.
RATIONALE: Giving chemotherapy, such as busulfan and fludarabine phosphate, before a peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate, tacrolimus, and antithymocyte globulin before and after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect). Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect. PURPOSE: This phase II trial is studying how well donor stem cell transplant works in treating patients with relapsed hematologic malignancies or secondary myelodysplasia previously treated with high-dose chemotherapy and autologous stem cell transplant .
RATIONALE: Studying samples of bone marrow and blood from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at bone marrow and blood samples from patients with leukemia or other hematopoietic cancers.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and how well patients will respond to treatment. PURPOSE: The purpose of this study is to collect and store blood and bone marrow samples from patients with hematologic cancer to be tested in the laboratory.
RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and determine a patient's eligibility for a treatment clinical trial. It may also help the study of cancer in the future. PURPOSE: This laboratory study is collecting tissue samples from patients with leukemia or other blood disorders who are planning to enroll in an ECOG leukemia treatment clinical trial.
RATIONALE: A Web site for stem cell transplant health information and support may be effective in helping parents improve their health-related knowledge, skills, and quality of life, which may also improve their children's quality of life. PURPOSE: This randomized phase III trial is studying a Web-based stem cell transplant support system to see how well it works compared with standard care in families of young patients undergoing a stem cell transplant.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.
RATIONALE: Antithymocyte globulin, clofarabine, and rituximab may stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with clofarabine and rituximab works in treating patients after an unsuccessful stem cell transplant.
RATIONALE: Vaccines may help the body build an effective immune response to kill cytomegalovirus infections. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients who have undergone a donor stem cell transplant and have cytomegalovirus infection that has not responded to therapy.
RATIONALE: Giving chemotherapy, such as clofarabine, melphalan, and thiotepa, before a donor stem cell transplant helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects and best dose of clofarabine when given together with melphalan and thiotepa, followed by a donor stem cell transplant and to see how well it works in treating patients with high-risk and/or advanced hematologic cancer or other disease.