31 Clinical Trials for Various Conditions
This study is testing if the recommended dose of BTX-A51 is safe and tolerable in participants with liposarcoma. The name of the study drug used in this research study is: -BTX-A51 (a type of kinase inhibitor)
This early phase I trial studies how well heated intra-peritoneal chemotherapy with doxorubicin and cisplatin work for the treatment of abdominal or pelvic tumors that can be removed by surgery (resectable), does not respond to treatment (refractory), or has come back (recurrent). Heated intra-peritoneal chemotherapy is a procedure performed in combination with abdominal surgery for cancer that has spread to the abdomen. It involves the infusion of a heated chemotherapy solution that circulates into the abdominal cavity. Chemotherapy drugs, such as doxorubicin and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Heating a chemotherapy solution and infusing it directly into the abdomen may kill more cells.
The purpose of this clinical research study is to learn if pazopanib when given in combination with topotecan can help to control sarcomas. The safety of this drug combination will also be studied. Pazopanib hydrochloride and topotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well alisertib works in treating patients with sarcoma that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced) or has spread to other places in the body (metastatic). Alisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to evaluate the investigational drug, silmitasertib (a pill taken by mouth), in combination with FDA approved drugs for solid tumors. An investigational drug is one that has not been approved by the U.S. Food \& Drug Administration (FDA), or any other regulatory authorities around the world for use alone or in combination with any drug, for the condition or illness it is being used to treat. The goals of this part of the study are: * Establish a recommended dose of silmitasertib in combination with chemotherapy * Test the safety and tolerability of silmitasertib in combination with chemotherapy in subjects with cancer * To determine the activity of study treatments chosen based on: * How each subject responds to the study treatment * How long a subject lives without their disease returning/progressing
Participants will have a diagnosis of dedifferentiated liposarcoma (DDLS) that has spread beyond its original location (advanced). In addition, their DDLS either has come back after treatment (recurrent), has spread to different parts of your body (metastatic), or is unable to be removed surgically (unresectable). The purpose of this study is to find out whether the combination of etrumadenant and zimberelimab is an effective treatment for people with advanced DDLS.
This phase II trial investigates how well oleclumab and durvalumab work in treating patients with sarcoma that has come back (recurrent) or does not respond to treatment (refractory) or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as oleclumab and durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies how well autologous NY-ESO-1-specific CD8-positive T lymphocytes (modified T lymphocytes \[T cells\]), chemotherapy, and aldesleukin with or without dendritic cell-targeting lentiviral vector ID-LV305 (LV305) and immunotherapeutic combination product CMB305 (CMB305) work in treating participants with sarcoma that has spread to other places in the body (advanced) or that has come back (recurrent). Modified T cells used in this study are taken from participants, are changed in a laboratory, and may "kill" some types of tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide may help the body get ready to receive the modified T cells. Interleukins, such as aldesleukin, are proteins made by white blood cells and other cells in the body and may help regulate immune response. LV305 and CMB305 may help stimulate the immune system. Giving modified T cells, chemotherapy, aldesleukin, LV305, and CMB305 may work better in treating participants with sarcoma.
This phase II trial studies how well nivolumab with and without ipilimumab and radiation therapy when given before surgery works in treating patients with undifferentiated pleomorphic sarcoma or dedifferentiated liposarcoma that can be removed by surgery. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving nivolumab, ipilimumab, and radiation therapy may work better in treating patients with undifferentiated pleomorphic sarcoma.
RATIONALE: Antiviral drugs, such as nelfinavir mesylate, may help prevent cancer cells from spreading. PURPOSE: This phase I/II trial is studying the side effects and best dose of nelfinavir mesylate and to see how well it works in treating patients with recurrent, metastatic, or unresectable liposarcoma.
This phase I trial studies the side effects and best way to give NY-ESO-1 specific T cells after cyclophosphamide in treating patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving NY-ESO-1 specific T cells with cyclophosphamide may kill more tumor cells.
This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.
The purpose of this study is to identify a safe dosing regimen for the combination of Torisel and liposomal doxorubicin in patients with recurrent sarcoma. A secondary purpose of the study is to determine how effective this combination is for the treatment of recurrent sarcoma.
This phase II trial is studying how well AZD0530 works in treating patients with recurrent locally advanced, or metastatic soft tissue sarcoma. AZD0530 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well sunitinib works in treating patients with metastatic, locally advanced, or locally recurrent sarcomas.
RATIONALE: Rosiglitazone may help liposarcoma cells develop into normal fat cells. PURPOSE: Phase II trial to study the effectiveness of rosiglitazone in treating patients who have liposarcoma.
RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining radiation therapy with chemotherapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of radiation therapy plus doxorubicin in treating patients who have resectable primary or recurrent peritoneal soft tissue sarcoma.
Troglitazone may help liposarcoma cells develop into normal cells. This was a single arm, open-label study with a two-stage design to evaluate troglitazone in patients with liposarcoma stratified by histologic subtype.
This phase II trial studies how well pembrolizumab and interferon gamma-1b work in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome that has come back (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Interferon gamma-1b may boost the immune system activity. Giving pembrolizumab and interferon gamma-1b together may work better in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome.
This phase I trial studies the side effects and how well giving autologous T cells with cyclophosphamide works in treating patients with soft tissue sarcoma that is metastatic or cannot be removed by surgery. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving autologous T cells together with cyclophosphamide may kill more tumor cells.
This is an open-label Phase 2 randomized study that will examine the use of the study agents, CMB305 (sequentially administered LV305 which is a dendritic cell-targeting viral vector expressing the New York Esophageal Squamous Cell Carcinoma 1 gene \[NY-ESO-1\] and G305 which is a NY-ESO-1 recombinant protein plus glucopyranosyl lipid adjuvant-stable emulsion \[GLA-SE\]) in combination with atezolizumab or atezolizumab alone, in participants with locally advanced, relapsed or metastatic sarcoma (synovial or myxoid/round cell liposarcoma) expressing the NY-ESO-1 protein. There is no formal primary hypothesis for this study.
This research trial studies genes in tissue samples from younger and adolescent patients with soft tissue sarcomas. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer
This randomized phase II trial studies how well gemcitabine hydrochloride works with or without pazopanib hydrochloride in treating patients with refractory soft tissue sarcoma. Drugs used in chemotherapy, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Pazopanib hydrochloride may also stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether gemcitabine hydrochloride is more effective with or without pazopanib hydrochloride in treating patients with soft tissue sarcoma.
This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.
RATIONALE: Cyproheptadine hydrochloride may prevent weight loss caused by cancer or cancer treatment. It is not yet known whether cyproheptadine is more effective than a placebo in preventing weight loss in young patients receiving chemotherapy for cancer. PURPOSE: This randomized phase III trial is studying cyproheptadine hydrochloride to see how well it works in preventing weight loss in young patients receiving chemotherapy for cancer.
RATIONALE: Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well sorafenib works in treating patients with advanced soft tissue sarcomas.
RATIONALE: Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may cause a stronger immune response and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy when given together with sargramostim in treating patients with advanced sarcoma or brain tumor.
RATIONALE: Drugs used in chemotherapy such as soblidotin use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of soblidotin in treating patients who have advanced or metastatic soft tissue sarcoma.
RATIONALE: Imatinib mesylate may stop the growth of tumor cells by blocking the enzymes necessary for cancer cell growth. PURPOSE: Phase II trial to study the effectiveness of imatinib mesylate in treating patients who have metastatic or unresectable locally advanced soft tissue sarcoma or bone sarcoma.