Treatment Trials

22 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Study of Pembrolizumab (MK-3475) in Combination With Romidepsin
Description

This phase I/II trial studies the side effects of pembrolizumab and romidepsin and to see how well they work in treating participants with peripheral T-cell lymphoma that has come back or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Romidepsin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and romidepsin may work better than pembrolizumab alone in treating participants with recurrent or refractory peripheral T-cell lymphoma.

TERMINATED
Irradiated Donor Cells Following Stem Cell Transplant in Controlling Cancer in Patients With Hematologic Malignancies
Description

This pilot clinical trial studies the side effects of irradiated donor cells following stem cell transplant in controlling cancer in patients with hematologic malignancies. Transfusion of irradiated donor cells (immune cells) from relatives may cause the patient's cancer to decrease in size and may help control cancer in patients receiving a stem cell transplant.

ACTIVE_NOT_RECRUITING
Durvalumab With or Without Lenalidomide in Treating Patients With Relapsed or Refractory Cutaneous or Peripheral T Cell Lymphoma
Description

This randomized phase I/II trial studies the best dose and side effects of durvalumab and to see how well it works with or without lenalidomide in treating patients with cutaneous or peripheral T cell lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as durvalumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving durvalumab and lenalidomide may work better in treating patients with cutaneous or peripheral T cell lymphoma.

COMPLETED
Yttrium Y 90 Basiliximab and Combination Chemotherapy Before Stem Cell Transplant in Treating Patients With Mature T-cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of yttrium Y 90 basiliximab when given together with standard combination chemotherapy before a stem cell transplant in treating patients with mature T-cell non-Hodgkin lymphoma. Radioactive substances linked to monoclonal antibodies, such as yttrium Y 90 basiliximab, can bind to cancer cells and give off radiation which may help kill cancer cells. Drugs used in chemotherapy, such as carmustine, cytarabine, etoposide, and melphalan (BEAM), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving yttrium Y 90 basiliximab and chemotherapy before a stem cell transplant may help kill any cancer cells that are in the body and help make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Stem cells that were collected from the patient's blood and stored before treatment are later returned to the patient to replace the blood-forming cells that were destroyed.

COMPLETED
Alisertib and Romidepsin in Treating Patients With Relapsed or Refractory B-Cell or T-Cell Lymphomas
Description

This phase I trial studies the side effects and best dose of alisertib and romidepsin in treating patients with B-cell or T-cell lymphomas that have returned after a period of improvement (relapsed) or have not responded to treatment (refractory). Alisertib and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Ruxolitinib Phosphate to Treat Diffuse Large B-Cell or Peripheral T-Cell Non-Hodgkin Lymphoma After Stem Cell Transplant
Description

This phase II trial studies how well ruxolitinib phosphate works in treating patients with diffuse large B-cell or peripheral T-cell non-Hodgkin lymphoma that has returned (relapsed) or that does not respond to treatment (refractory) after donor stem cell transplant. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Lenalidomide Therapy After Chemotherapy & Stem Cell Transplant in Treating Chemotherapy Resistan Non-Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of lenalidomide when given after combination chemotherapy with or without rituximab and stem cell transplant and to see how well it works in treating patients with non-Hodgkin lymphoma that has not responded to treatment or has returned after a period of improvement and is resistant to chemotherapy. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, may block cancer growth by targeting certain cells. Giving lenalidomide after combination chemotherapy with or without rituximab may work better in treating patients with non-Hodgkin lymphoma.

COMPLETED
Romidepsin and Parsaclisib for the Treatment of Relapsed or Refractory T-Cell Lymphomas
Description

This phase I trial finds the appropriate parsaclisib dose level in combination with romidepsin for the treatment of T-cell lymphomas that have come back (relapsed) or that have not responded to standard treatment (refractory). The other goals of this trial are to find the proportion of patients whose cancer is put into complete remission or significantly reduced by romidepsin and parsaclisib, and to measure the effectiveness of romidepsin and parsaclisib in terms of patient survival. Romidepsin blocks certain enzymes (histone deacetylases) and acts by stopping cancer cells from dividing. Parsaclisib is a PI3K inhibitor. The PI3K pathway promotes cancer cell proliferation, growth, and survival. Parsaclisib, thus, may stop the growth of cancer cells by blocking PI3K enzymes needed for cell growth. Giving romidepsin and parsaclisib in combination may work better in treating relapsed or refractory T-cell lymphomas compared to either drug alone.

ACTIVE_NOT_RECRUITING
Pembrolizumab and Pralatrexate in Treating Patients With Relapsed or Refractory Peripheral T-Cell Lymphomas
Description

This phase I/II trial studies the side effects and best dose of pralatrexate when given together with pembrolizumab and how well they work in treating patients with peripheral T-cell lymphomas that has come back after a period of improvement or has not responded to treatment. Pralatrexate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and pralatrexate may work better in treating patients with peripheral T-cell lymphomas.

COMPLETED
Venetoclax and Romidepsin in Treating Patients With Recurrent or Refractory Mature T-Cell Lymphoma
Description

This phase II trial studies the side effects and best dose of venetoclax and romidepsin to see how well it works in treating patients with mature T-cell lymphoma that has come back (recurrent) or does not respond to treatment (refractory). Venetoclax and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Pembrolizumab and External Beam Radiation Therapy in Treating Patients With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This phase II trial studies how well pembrolizumab and external beam radiation therapy work in treating patients with non-Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and external beam radiation therapy may work better in treating patients with non-Hodgkin lymphoma than pembrolizumab alone.

ACTIVE_NOT_RECRUITING
Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers
Description

This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.

ACTIVE_NOT_RECRUITING
Anti-ICOS Monoclonal Antibody MEDI-570 in Treating Patients With Relapsed or Refractory Peripheral T-cell Lymphoma Follicular Variant or Angioimmunoblastic T-cell Lymphoma
Description

This phase I trial studies the side effects and best dose of anti-inducible T-cell co-stimulator (ICOS) monoclonal antibody MEDI-570 in treating patients with peripheral T-cell lymphoma follicular variant or angioimmunoblastic T-cell lymphoma that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as anti-ICOS monoclonal antibody MEDI-570, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.

COMPLETED
Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma
Description

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Gene Therapy in Treating Patients With Human Immunodeficiency Virus-Related Lymphoma Receiving Stem Cell Transplant
Description

This phase I/II trial studies the side effects and best dose of gene therapy in treating patients with human immunodeficiency virus (HIV)-related lymphoma that did not respond to therapy or came back after an original response receiving stem cell transplant. In gene therapy, small stretches of deoxyribonucleic acid (DNA) called "anti-HIV genes" are introduced into the stem cells in the laboratory to make the gene therapy product used in this study. The type of anti-HIV genes and therapy in this study may make the patient's immune cells more resistant to HIV-1 and prevent new immune cells from getting infected with HIV-1.

COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
COMPLETED
Alisertib in Treating Patients With Relapsed or Refractory Peripheral T-Cell Non-Hodgkin Lymphoma
Description

This phase II trial studies how well alisertib works in treating patients with peripheral T-cell non-Hodgkin lymphoma that has come back after a period of improvement or has not responded to treatment. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and the best dose of temsirolimus when given together with dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase in treating young patients with relapsed acute lymphoblastic leukemia or non-Hodgkin lymphoma. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as dexamethasone, mitoxantrone hydrochloride, vincristine sulfate, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus with combination chemotherapy may be and effective treatment for acute lymphoblastic leukemia or non-Hodgkin lymphoma.

COMPLETED
Veliparib, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory Lymphoma, Multiple Myeloma, or Solid Tumors
Description

This phase I/II trial studies the side effects and the best dose of veliparib when given together with bendamustine hydrochloride and rituximab and to see how well they work in treating patients with lymphoma, multiple myeloma, or solid tumors that have come back or have not responded to treatment. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving veliparib together with bendamustine hydrochloride and rituximab may kill more cancer cells.

COMPLETED
Lenalidomide After Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancers
Description

This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.

Conditions
Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2AAdult Acute Promyelocytic Leukemia With PML-RARAAdult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-Cell LymphomaAlkylating Agent-Related Acute Myeloid LeukemiaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaPost-Transplant Lymphoproliferative DisorderPrimary Cutaneous B-Cell Non-Hodgkin LymphomaProlymphocytic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Non-Hodgkin LymphomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRichter SyndromeSmall Intestinal LymphomaSplenic Marginal Zone LymphomaT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenstrom Macroglobulinemia
COMPLETED
Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult B Acute Lymphoblastic LeukemiaAdult Hepatocellular CarcinomaAdult Nasal Type Extranodal NK/T-Cell LymphomaAdult Solid NeoplasmAdult T Acute Lymphoblastic LeukemiaAdvanced Adult Hepatocellular CarcinomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaChronic Lymphocytic LeukemiaCutaneous B-Cell Non-Hodgkin LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLocalized Non-Resectable Adult Liver CarcinomaLocalized Resectable Adult Liver CarcinomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaProgressive Hairy Cell Leukemia Initial TreatmentRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Liver CarcinomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSmall Intestinal LymphomaSplenic Marginal Zone LymphomaStage II Small Lymphocytic LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-Cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-Cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides and Sezary SyndromeStage IIIB Mycosis Fungoides and Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-Cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-Cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides and Sezary SyndromeStage IVB Mycosis Fungoides and Sezary SyndromeT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Hairy Cell LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Tipifarnib in Treating Patients With Relapsed or Refractory Lymphoma
Description

This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.