7 Clinical Trials for Various Conditions
This phase III trial compares the effect of adding nivolumab to the usual chemotherapy (cisplatin or carboplatin with gemcitabine) versus standard chemotherapy alone in treating patients with nasopharyngeal cancer that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as cisplatin, carboplatin, and gemcitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab with the usual chemotherapy may work better than the standard chemotherapy alone in treating patients with nasopharyngeal cancer.
This phase I trial studies the side effects and best dose of stereotactic body radiation therapy (SBRT) in treating participants with head and neck cancer that has spread from where it started to nearby tissue or lymph nodes and is at high risk for continuing to spread because the participant cannot undergo standard chemotherapy. Stereotactic body radiation therapy is a specialized radiation therapy that delivers radiation directly to the tumor in smaller doses over several days, which may kill more tumor cells and cause less damage to normal tissue.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This phase II trial is studying how well cediranib maleate works in treating patients with recurrent or newly diagnosed metastatic head and neck cancer. Cediranib maleate may stop the growth of head and neck cancer by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase I trial studies the side effects and best dose of vorinostat when given together with azacitidine in treating patients with nasopharyngeal cancer or nasal natural killer T-cell lymphoma that has recurred (come back) at or near the same place as the original (primary) tumor, usually after a period of time during which the cancer could not be detected or has spread to other parts of the body. Drugs used in chemotherapy, such as vorinostat and azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Vorinostat and azacitidine also may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat together with azacitidine may kill more cancer cells.
This randomized phase II trial studies how well ficlatuzumab with or without cetuximab works in treating patients with head and neck squamous cell carcinoma that has come back or spread to other places in the body and resistant to cetuximab treatment. Monoclonal antibodies, such as ficlatuzumab and cetuximab, may block growth signals that lets a tumor cell survive and reproduce, and helps the immune system recognize and fight head and neck squamous cell carcinoma.