43 Clinical Trials for Various Conditions
This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
This phase II trial studies how well celecoxib works through surgery and radiation therapy in treating patients with head and neck cancer that has spread to other places in the body (advanced). Celecoxib is Food and Drug Administration approved to treat arthritis, acute pain, and painful menstrual periods. Adding celecoxib to standard of care treatment may help to decrease the amount of time between surgery and radiation therapy.
This phase Ib trial tests the safety, side effects and best dose of tumor membrane vesicle (TMV) vaccine therapy alone and in combination with pembrolizumab and evaluates how well it works in treating patients with head and neck squamous cell cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Vaccines made from a person's tumor cells, such as TMV vaccines, may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving TMV vaccine therapy alone or with pembrolizumab may be safe, tolerable and/or effective in treating patients with recurrent and/or metastatic head and neck squamous cell cancer.
This clinical trial tests the impact of offering hearing tests (audiometry) close to home and remotely on participation in monitoring for treatment-related hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation. Cisplatin, a chemotherapy often used to treat head and neck cancers, and radiation given near the ear can cause hearing loss in some patients. Hearing loss can have a major negative impact on quality of life, contributing to social isolation and frustration. Identifying hearing changes may allow treatment changes to prevent further loss. Audiometry measures hearing loss using a graphic record of the softest sounds that a person can hear at various frequencies. It is recommended patients have a hearing test before, during and after treatment to monitor for any hearing loss. This is usually done in the office and performed on the same day as other visits whenever possible, however, patients who live far away or have stage IV cancer, may have more difficulty coming back for hearing tests. Offering close to home and remote audiometry may improve monitoring for hearing loss in patients with head and neck squamous cell cancer receiving cisplatin and/or radiation.
This phase II trial tests how well lovastatin and pembrolizumab work in treating patients with head and neck cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Lovastatin is a drug used to lower the amount of cholesterol in the blood and may also cause tumor cell death. In addition, studies have shown that lovastatin may make the tumor cells more sensitive to immunotherapy. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lovastatin and pembrolizumab may kill more tumor cells in patients with recurrent or metastatic head and neck cancer.
This phase III trial compares the effect of adding cetuximab to pembrolizumab versus pembrolizumab alone in treating patients with head and neck squamous cell carcinoma (HNSCC) that has come back after a period of improvement (recurrent) and/or that has spread from where it first started (primary site) to other places in the body (metastatic). Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of tumor cells. This may help keep tumor cells from growing. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving cetuximab and pembrolizumab together may be more effective at treating patients with recurrent and/or metastatic HNSCC than pembrolizumab alone.
The purpose of this research is to identify a biomarker that is exists when human papillomavirus (HPV) mediated oropharyngeal squamous cell carcinoma is present and does not exist when HPV mediated oropharyngeal squamous cell carcinoma is absent.
This phase II trial compares the effect of adding ipatasertib to pembrolizumab (standard immunotherapy) vs. pembrolizumab alone in treating patients with squamous cell cancer of the head and neck that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ipatasertib in combination with pembrolizumab may be more effective than pembrolizumab alone in improving some outcomes in patients with recurrent/metastatic squamous cell cancer of the head and neck.
This phase II trial studies the good and bad effects of the combination of drugs called cabozantinib and nivolumab in treating patients with melanoma or squamous cell head and neck cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine how quickly patients can be divided into groups based on biomarkers in their tumors. A biomarker is a biological molecule found in the blood, other body fluids, or in tissues that is a sign of a normal or abnormal process or a sign of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. The two biomarkers that this trial is studying are "tumor mutational burden" and "tumor inflammation signature." Another purpose of this trial is to help doctors learn if cabozantinib and nivolumab shrink or stabilize the cancer, and whether patients respond differently to the combination depending on the status of the biomarkers.
This phase II trial studies the effect of cemiplimab in combination with low-dose paclitaxel and carboplatin in treating patients with squamous cell carcinoma of the head and neck that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as cemiplimab , may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, like paclitaxel and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving cemiplimab in combination with paclitaxel and carboplatin may work better in treating recurrent or metastatic squamous cell carcinoma of the head and neck.
This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
This phase I trial evaluates the side effects of NT-I7 in treating patients with squamous cell carcinoma of head and neck that has come back (recurrent) who are undergoing surgery. NT-I7 is an immunotherapy drug that works by helping the immune system fight tumor cells. The body produces T-cells which play an important role in body's immune response and its ability to recognize tumor cells. This immunotherapy drug may boost body's T-cells to help fight cancer and enhance body's response to cancer.
This phase I trial evaluates the best dose, possible benefits and/or side effects of combination therapy with elimusertib (BAY 1895344), stereotactic body radiation, and pembrolizumab in treating patients with head and neck squamous cell cancer that has come back (recurrent) and cannot be removed by surgery (unresectable). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving BAY 1895344, stereotactic body radiation therapy in combination with pembrolizumab may shrink or stabilize head and neck squamous cell cancer for longer than treatment with radiation and immunotherapy without BAY 1895344.
This phase II trial studies how well pembrolizumab and cabozantinib in treating patients with head and neck squamous cell cancer that has come back or spread to other places in the body and cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the pathways needed for cell growth. Giving pembrolizumab and cabozantinib may improve the chances of tumor response in patients with head and neck squamous cell cancer.
This randomized phase II trial studies how well ficlatuzumab with or without cetuximab works in treating patients with head and neck squamous cell carcinoma that has come back or spread to other places in the body and resistant to cetuximab treatment. Monoclonal antibodies, such as ficlatuzumab and cetuximab, may block growth signals that lets a tumor cell survive and reproduce, and helps the immune system recognize and fight head and neck squamous cell carcinoma.
This phase IIa trial studies how well the experimental drug, BGJ398 (infigratinib), works in treating patients with fibroblast growth factor receptor (FGFR) 1-3 translocated, mutated, or amplified head and neck cancer that has returned after a period of improvement. BGJ398 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of stereotactic body radiation therapy (SBRT) in treating participants with head and neck cancer that has spread from where it started to nearby tissue or lymph nodes and is at high risk for continuing to spread because the participant cannot undergo standard chemotherapy. Stereotactic body radiation therapy is a specialized radiation therapy that delivers radiation directly to the tumor in smaller doses over several days, which may kill more tumor cells and cause less damage to normal tissue.
This phase II trial studies the effects of interstitial photodynamic therapy in patients with head and neck cancer that has come back. Interstitial photodynamic therapy uses a combination of laser light and a light-sensitive drug called porfimer sodium to destroy tumors. During treatment a laser light is used to activate the drug. Interstitial photodynamic therapy may be an effective treatment for head and neck cancer.
This phase II clinical trial studies how well soy isoflavones work in preventing head and neck cancer in patients with stage I-IV head and neck cancer undergoing surgery. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of soy isoflavones may prevent head and neck cancer recurrence.
This partially randomized phase II trial studies giving capecitabine and vorinostat in treating patients with head and neck cancer that has come back after previous treatment or that has spread to other areas in the body. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether giving capecitabine together with vorinostat is more effective than capecitabine alone in treating patients with cancer of the head and neck cancer.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This randomized phase II trial studies how well combination chemotherapy with or without erlotinib hydrochloride works in treating patients with squamous cell carcinoma of the head and neck that has spread to other parts of the body or has come back. Drugs used in chemotherapy, such as docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy with or without erlotinib hydrochloride may be an effective treatment for squamous cell carcinoma of the head and neck.
This phase II trial studies how well sorafenib works with carboplatin and paclitaxel in treating participants with head and neck squamous cell cancer that has spread to other parts of the body or that has come back. Drugs used in chemotherapy, such as sorafenib, carboplatin, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial is studying how well cediranib maleate works in treating patients with recurrent or newly diagnosed metastatic head and neck cancer. Cediranib maleate may stop the growth of head and neck cancer by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Pembrolizumab and nivolumab (with or without chemotherapy) are used to treat head and neck cancer. The middle part of the throat (oropharynx) is a common location for head and neck cancer. This cancer is known as oropharyngeal squamous cell carcinoma (OPSCC) and is most often caused by human papillomavirus (HPV) infection. This real-world evidence study carried out in the United States (US) will assess patient demographic and clinical characteristics, treatment patterns, and effectiveness of pembrolizumab and nivolumab (with or without chemotherapy) in patients with HPV positive (HPV+) OPSCC after their cancer spread (metastatic) and/or returned (recurrent). The collected real-world data can be compared with data derived from matched study populations in clinical studies that test new therapies in patients with HPV+ OPSCC. This will allow a more reliable evaluation of the clinical benefits and better-informed design of future clinical studies in this patient population.
This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
This pilot clinical trial studies how well Prepare to Care kit works in improving caregiver support in patients with stage I-IV head and neck cancer that is new or has come back. Prepare to Care kit may increase knowledge about head and neck cancer and enhance stress-management skills.
Subjects have a type of cancer that has been associated with an infection with a virus called human papilloma virus (HPV). The cancer has come back, has not gone away after standard treatment or the subject cannot receive standard treatment. This is a research study using special immune system cells called HPVST cells, a new experimental treatment. Investigators want to find out if they can use this type of treatment in patients with HPV-cancers. They have discovered a way to grow large number of HPV-specific T cells from the blood of patients with HPV-cancers. They want to see if these special white blood cells, called HPVST cells, that will have been trained to kill HPV infected cells can survive in the blood and affect the tumor. They will also see if they can make the T cells more active against the HPV-cancers by engineering them to be resistant to the TGF-beta chemical that these HPV-cancers produce. They will grow these HPVST cells from the patient's blood. The purpose of this study is to find the biggest dose of HPVSTs that is safe, to see how long they last in the body, to learn what the side effects are and to see if the HPVSTs will help people with HPV associated cancers. If the treatment with HPVST cells alone proves safe (Group A), additional group of patients (Group B) will receive Nivolumab in addition to HPVST cells in a lymphodepleted environment. Nivolumab is an antibody therapy that helps T cells control the tumor and it is FDA approved for the treatment of certain types of cancers, including Hodgkin's lymphoma. Lymphodepletion will decrease the level of circulating T cells prior to infusion of HPVST cells, thereby giving them room to expand. The purpose of this part of the study is to find out if TGF-beta resistant HPVST cells in combination with Nivolumab are safe, how long they last in the body and if they are more effective than HPVST cells alone in controlling the tumor.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.