31 Clinical Trials for Various Conditions
This phase II trial compares copanlisib and olaparib to standard of care chemotherapy in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that did not respond to previous platinum-based chemotherapy (platinum resistant) and that has come back (recurrent). Copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is a PARP inhibitor. PARP is a protein that helps repair damaged deoxyribonucleic acid (DNA). Blocking PARP may prevent tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving copanlisib and olaparib may extend the time that the cancer does not progress compared to standard of care chemotherapy in patients with recurrent platinum resistant ovarian, fallopian tube, or primary peritoneal cancer.
This phase II trial studies how well modified vaccinia virus ankara vaccine expressing p53 (p53MVA) and pembrolizumab work in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent). Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving p53MVA and pembrolizumab together may work better in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.
This phase I/II trial tests the safety, side effects and best dose of a combination therapy (niraparib and selenium) in treating patients with BRCA negative ovarian cancer that has come back (recurrent) and does not respond to platinum based therapy (platinum resistant). Selenium is a form of the trace element with potential antineoplastic activity which may help block the formation of growths that may become cancer. Niraparib is in a class of medications called poly (ADP-ribose) polymerase inhibitors. It works by killing cancer cells and helps maintain the response of certain types of ovarian, fallopian tube and peritoneal cancers. Giving selenium and niraparib may kill more cells in patients with ovarian cancer.
This phase II clinical trial studies the effect of lenvatinib, pembrolizumab, and paclitaxel in treating patients with endometrial, epithelial ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent). While all 3 study drugs are FDA approved, and 2-drug combinations have been studied, the 3- drug combination has not been studied yet. The investigators believe that the addition of pembrolizumab to weekly paclitaxel and lenvatinib (or weekly paclitaxel to pembrolizumab and lenvatinib) is highly effective and safe with manageable side effects in both recurrent endometrial and platinum resistant ovarian cancer. The purpose of this trial is to study how well lenvatinib, pembrolizumab, and weekly paclitaxel work together in women who have recurrent endometrial cancer and/or recurrent platinum resistant ovarian, fallopian tube, and primary peritoneal cancer, and what kind of side effects patients may experience.
This phase II trial investigates the effect of irinotecan liposome and bevacizumab in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that shows less response to platinum therapy (platinum resistant), has come back (recurrent), or does not respond to treatment (refractory). Irinotecan liposome may help block the formation of growths that may become cancer. Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Giving irinotecan liposome and bevacizumab may kill more cancer cells.
This trial studies the side effects and best dose of AVB-S6-500 when given together with durvalumab in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that is resistant to platinum therapy or has come back. Immunotherapy with AVB-S6-500 and durvalumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread.
This is a Phase I/Ib dose escalation, dose expansion, study to evaluate the safety and identify the recommended dose of modified immune cells PRGN-3005 (autologous chimeric antigen receptor (CAR) T cells developed by Precigen, Inc.) in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has spread to other places in the body, that has come back and is resistant to platinum chemotherapy. Autologous CAR T cells are modified immune cells that have been engineered in the laboratory to specifically target a protein found on tumor cells and kill them.
This is a Phase 2, open-label, randomized, 3-arm study to evaluate progression-free survival (PFS) in patients with recurrent platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer treated with intermittent or continuous regimens of relacorilant in combination with nab-paclitaxel compared with patients treated with nab-paclitaxel alone.
This phase I trial studies the best dose and side effects of NY-ESO-1 T cell receptor (TCR) engineered T cells and how well they work with NY-ESO-1 TCR engineered hematopoietic stem cells (HSCs) after melphalan conditioning regimen in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent) or does not respond to treatment (refractory). The melphalan conditioning chemotherapy makes room in the patient's bone marrow for new blood cells and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR T cells and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer. Giving NY-ESO-1 TCR engineered T cells and HSCs after melphalan may work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.
This phase Ib trial studies the side effects and best dose of nivolumab with or without ipilimumab in treating patients with female reproductive cancer that has come back (recurrent) or is high grade and has spread extensively throughout the peritoneal cavity (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This randomized phase I/IIb trial studies side effects and best dose of atezolizumab when given together with guadecitabine and CDX-1401 vaccine and to see how well they work in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has come back. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CDX-1401 vaccine may enhance the expression of the genes encoding tumor antigens on the surface of tumor cells and enhance the activity of tumor-killing T cells against those tumor cells. Vaccines made from monoclonal antibodies combined with tumor cells may help the body build an effective immune response to kill tumor cells. Giving atezolizumab, guadecitabine, and CDX-1401 vaccine may work better than CDX-1401 alone in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.
This phase II trial studies how well durvalumab and tremelimumab work in treating participants with ovarian, primary peritoneal, or fallopian tube cancer that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as durvalumab and tremelimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether give durvalumab and tremelimumab in combination or sequential administration works better in treating participants with ovarian, primary peritoneal, or fallopian tube cancer.
This phase I trial studies the side effects and best dose of olaparib and onalespib when given together in treating patients with solid tumors that have spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable) or ovarian, fallopian tube, primary peritoneal, or triple-negative breast cancer that has come back (recurrent). Olaparib and onalespib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II/III trial studies how well cediranib maleate and olaparib work when given together or separately, and compares them to standard chemotherapy in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has returned (recurrent) after receiving chemotherapy with drugs that contain platinum (platinum-resistant) or continued to grow while being treated with platinum-based chemotherapy drugs (platinum-refractory). Cediranib maleate and olaparib may stop the growth of tumor cells by blocking enzymes needed for cell growth. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving cediranib maleate and olaparib together may cause more damage to cancer cells when compared to either drug alone or standard chemotherapy.
Akt inhibitor MK2206 is a drug that may stop cancer cells from growing by blocking a protein called protein kinase B (AKT) inside the cell. AKT interacts with other proteins in the cell that are part of the P13K/AKT pathway, a pathway that is know to play a role in the growth of cancer cells. Mutations in P13K or in AKT, or changes in another protein called phosphatase and tensin homolog (PTEN) in this pathway can lead it to become more active than is normal. This study investigates how effective MK-2206 is in treating ovarian, fallopian tube, or primary peritoneal cancer where there are mutations in P13K or AKT or low levels of PTEN.
This phase I trial tests the safety, side effects, best dose of MUC1-activated T cells in treating patients with ovarian cancer that has come back after a period of improvement (relapsed) or that remains despite treatment (resistant). T cells are infection fighting blood cells that can kill tumor cells. The T cells given in this study will come from the patient and are made in a laboratory to recognize MUC1, a protein on the surface of tumor cells that plays a key role in tumor cell growth. These MUC1-activated T cells may help the body's immune system identify and kill MUC1 expressing ovarian tumor cells.
This phase I trial tests the safety, side effects, and best dose of combination therapy with pelcitoclax (APG-1252) and cobimetinib in treating patients with ovarian and endometrial cancers that have come back after a period of improvement (recurrent). APG-1252 is a drug that inhibits activity of proteins that prevent cell death, leading to increased cell death and reduced cell growth. Cobimetinib is used in patients whose cancer has a mutated (changed) form of a gene called BRAF. It is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving APG-1252 in combination with cobimetinib may shrink or stabilize tumor in patients with recurrent ovarian and endometrial cancers.
This phase II trial tests whether pembrolizumab combined with bevacizumab with or without agonist anti-CD40 CDX-1140 works to shrink tumors in patients with ovarian cancer that has come back (recurrent). Anti-CD40 CDX-1140 works by stimulating certain immune cells within the tumor and, when combined with other immunotherapy treatments, may increase antitumor antibody production. Immunotherapy with monoclonal antibodies, such as pembrolizumab and bevacizumab, may help the body's immune system, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and bevacizumab with anti-CD40 CDX-1140 may decrease symptoms, prolonged survival, and improve quality of life in patients with ovarian cancer.
This phase II trial studies the side effects of ONC201 and paclitaxel and how well they work in treating patients with platinum-resistant epithelial ovarian, fallopian tube, or primary peritoneal cancer that has come back (recurrent), or that does not respond to treatment (refractory). ONC201 is the first in its class of drugs that antagonize some specific cell receptors on cancer cells, leading to their destruction. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ONC201 and paclitaxel may work better in treating patients with platinum-resistant epithelial ovarian, fallopian tube, or primary peritoneal cancer compared to paclitaxel alone.
This randomized phase II trial studies how well oncolytic measles virus encoding thyroidal sodium iodide symporter (MV-NIS) compared to investigator's choice chemotherapy works in treating patients with ovarian, fallopian, or peritoneal cancer. Measles virus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells.
IIMGN151-1001 is a Phase 1, first in human, open-label dose-escalation, optimization, and expansion study designed to characterize the safety, tolerability, pharmacokinetics (PK), immunogenicity, and preliminary antitumor activity of IMGN151 in adult participants with recurrent endometrial cancer; recurrent, high-grade serous epithelial ovarian, fallopian tube, and primary peritoneal cancers; or recurrent cervical cancers. All participants will be, in the opinion of the investigator, appropriate for nonplatinum single-agent therapy for their next line of therapy.
This phase Ib trial studies the best dose and side effects of niraparib and copanlisib in treating patients with endometrial, ovarian, primary peritoneal, or fallopian tube cancer that has come back. Niraparib and copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of mirvetuximab soravtansine and rucaparib camsylate in treating participants with endometrial, ovarian, fallopian tube or primary peritoneal cancer that has come back. Drugs such as mirvetuximab soravtansine are antibodies linked to a toxic substance and may help find certain tumor cells and kill them without harming normal cells. Rucaparib camsylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving mirvetuximab soravtansine and rucaparib camsylate may work better in treating participants with recurrent endometrial, ovarian, fallopian tube or primary peritoneal cancer.
This randomized phase II trial studies the side effects of paclitaxel and bevacizumab with or without emactuzumab and how well they work in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has come back after treatment with platinum chemotherapy. Monoclonal antibodies, such as emactuzumab, block tumor growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab may prevent the growth of new blood vessels that tumors need to grow. Giving emactuzumab with paclitaxel and bevacizumab may work better in treating ovarian, fallopian tube, or primary peritoneal cancer.
Biomarker Screening Protocol for Preliminary Eligibility Determination for Adoptive T-cell Therapy Trials:This is a decentralized, multi-site, US-based biomarker screening study to identify participants who have specific disease indications and tumor expression of target(s) of interest that may inform eligibility for active and future Lyell clinical trials. No investigational treatments will be administered in this non-interventional screening study. Only previously obtained archival tumor tissue will be allowed on this study for biomarker analysis. Fresh tumor biopsies are not permitted on this study. The study will be conducted virtually and participants will utilize telehealth and e-consent modules. If participants tumors express the biomarkers of interest they can be referred to open and enrolling clinical trials. Participation on the screening study does not guarantee enrollment or treatment on an interventional clinical trial.
This study will evaluate the safety and tolerability of LYL797, a ROR1-targeted CAR T-cell therapy, in patients with ROR1+ relapsed or refractory triple negative breast cancer (TNBC), non-small cell lung cancer (NSCLC), platinum-resistant epithelial ovarian cancer/ fallopian tube cancer/ primary peritoneal cancer (Ovarian cancer), or Endometrial cancer. The first part of the study will determine the safe dose for the next part of the study, and will enroll patients with TNBC, NSCLC, Ovarian or Endometrial cancer. The second part of the study will test that dose in additional patients with TNBC, NSCLC, Ovarian or Endometrial cancer.
This is a phase 1 dose escalation study to characterize the feasibility, safety and tolerability of MCY-M11 when administered as an intraperitoneal (IP) infusion for 3 weekly doses for women with platinum resistant high grade serous adenocarcinoma of the ovary, primary peritoneum, or fallopian tube, and subjects with peritoneal mesothelioma with recurrence after prior chemotherapy. The study will also assess multiple cycles of treatment and adding preconditioning with cyclophosphamide.
This phase I trial studies the side effects and how well surgery and heated chemotherapy with or without non-heated chemotherapy after surgery works in treating patients with ovarian, fallopian tube, uterine, or peritoneal cancer. Giving a dose of heated chemotherapy into the abdomen during surgery that is done to remove ovarian, fallopian tube, uterine, or peritoneal cancer may help lower the risk of the cancer coming back. Giving unheated chemotherapy drugs directly into the abdomen after surgery may kill more tumor cells.
This is a multi-center, open-label phase 1 dose escalation trial that uses a modified 3+3 design to identify a recommended phase 2 dose (RP2D) of AB-1015 cell product. Backfill cohorts will enroll additional subjects at doses deemed to be safe for a total enrollment of up to 12 subjects per each backfill cohort on the protocol.
The OnPrime study is a multi-center, randomized open-label phase 3 study evaluating the safety and efficacy of Olvi-Vec followed by platinum-doublet chemotherapy and bevacizumab compared to the Active Comparator Arm with Physician's Choice of chemotherapy and bevacizumab in women diagnosed with platinum-resistant/refractory ovarian cancer (includes fallopian tube cancer and primary peritoneal cancer). This Phase III trial builds on the efficacy and safety data reported in the previous Phase II VIRO-15 trial with promising objective response rate and progression-free survival observed in heavily pre-treated patients with platinum-resistant/refractory ovarian cancer. The phase II results also showed that the intra-peritoneal route of delivery was efficient in generating tumor cell killing and immune activation, and led to clinical reversal of platinum-resistance or refractoriness in this difficult-to-treat patient population.