277 Clinical Trials for Various Conditions
The purpose of this trial is to determine the maximum tolerated dose (MTD) of hypofractionated IMPT for the reirradiation of locoregionally recurrent rectal cancer.
RATIONALE: Monoclonal antibodies such as cetuximab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy such as fluorouracil work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving cetuximab with fluorouracil and radiation therapy may kill more tumor cells.
This phase I trial studies the side effects and best dose of trametinib when given together with fluorouracil and radiation therapy before surgery in treating patients with stage II-III rectal cancer. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving trametinib together with fluorouracil and radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed
This early phase I trial studies how well heated intra-peritoneal chemotherapy with doxorubicin and cisplatin work for the treatment of abdominal or pelvic tumors that can be removed by surgery (resectable), does not respond to treatment (refractory), or has come back (recurrent). Heated intra-peritoneal chemotherapy is a procedure performed in combination with abdominal surgery for cancer that has spread to the abdomen. It involves the infusion of a heated chemotherapy solution that circulates into the abdominal cavity. Chemotherapy drugs, such as doxorubicin and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Heating a chemotherapy solution and infusing it directly into the abdomen may kill more cells.
This phase I trial studies the side effects and best dose of trifluridine/tipiracil hydrochloride combination agent TAS-102 (TAS-102) when given together with radiation therapy in treating patients with rectal cancer that has come back, spread to other places in the body, or cannot be removed by surgery. Drugs used in chemotherapy, such as TAS-102, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving TAS-102 with radiation therapy may kill more tumor cells.
This phase I/II trial studies the side effects and best dose of nintedanib when given together with capecitabine and to see how well they work in treating patients with colorectal cancer that has not responded to previous treatment (refractory) and has spread to other places in the body (metastatic). Nintedanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It may also block the growth of new blood vessels necessary for tumor growth. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nintedanib with capecitabine may be a better treatment for colorectal cancer.
This randomized clinical trial studies the Family Caregiver Palliative Care Intervention in supporting caregivers of patients with stage II-IV gastrointestinal, gynecologic, urologic and lung cancers. Education and telephone counseling may reduce stress and improve the well-being and quality of life of caregivers of cancer patients.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This phase II trial studies how well v-akt murine thymoma viral oncogene homolog 1 (Akt) inhibitor MK2206 works in treating patients with previously treated colon or rectal cancer that has spread from the primary site to other places in the body or nearby tissue or lymph nodes and cannot be removed by surgery. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well capecitabine and celecoxib with or without radiation therapy works in treating patients with colorectal cancer that is newly diagnosed or has been previously treated with fluorouracil, and has spread to other parts of the body (metastatic). Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Celecoxib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving capecitabine and celecoxib together with radiation therapy may kill more tumor cells.
This phase I trial studies the side effects and best dose of sorafenib tosylate when given together with bevacizumab, irinotecan hydrochloride, leucovorin calcium, and fluorouracil in treating patients with colorectal cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as irinotecan hydrochloride, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Sorafenib tosylate and bevacizumab may also block tumor growth in different ways by targeting certain cells. Giving sorafenib tosylate and bevacizumab together with combination chemotherapy may be a better treatment for colorectal cancer.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
The purpose of this study is to determine if a new drug, RO4929097, can work with cetuximab, a drug already approved for colorectal cancer, to help fight the patient's cancer. Cancers arise as a result of abnormal control of gene expression. One of the pathways that gets abnormally regulated in some cancers is the Notch pathway. RO4929097 is an investigational drug that blocks the activation of the Notch pathway. It is hoped that by blocking this abnormal activation, this drug may be helpful in patients with cancer but the investigators do not yet know if that is true. Cetuximab is an antibody against epidermal growth factor receptor and is known to have activity in metastatic colorectal cancer. Recent studies have shown that people with colorectal cancers that contain a mutation in a gene called K-ras do not benefit from receiving cetuximab. It is unknown if adding RO4929097 to cetuximab would benefit patients who have tumors with this mutation.
This randomized phase II trial studies how well radiation therapy and capecitabine with or without curcumin before surgery works in treating patients with rectal cancer. Drugs such as curcumin may make tumor cells more sensitive to radiation therapy. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving chemotherapy with radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. It is not yet known whether chemotherapy and radiation therapy is more effective with or without curcumin when given before surgery in patients with rectal cancer.
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given together with cetuximab and to see how well they work in treating patients with advanced gastrointestinal cancer, head and neck cancer, non-small cell lung cancer, or colorectal cancer. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride and cetuximab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving erlotinib hydrochloride together with cetuximab may kill more tumor cells.
This randomized phase I/II trial studies the side effects, best way to give, and best dose of erlotinib and bevacizumab when given with cetuximab and how well giving erlotinib and cetuximab together with or without bevacizumab works in treating patients with metastatic or unresectable kidney, colorectal, head and neck, pancreatic, or non-small cell lung cancer. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab and bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab and bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving erlotinib together with cetuximab and/or bevacizumab may kill more tumor cells.
This phase II trial is studying how well oxaliplatin works in treating young patients with recurrent solid tumors that have not responded to previous treatment. Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop tumor cells from dividing so they stop growing or die.
This clinical trial is studying the amount of EF5 and motexafin lutetium present in tumor cells and/or normal tissues of patients with abdominal (such as ovarian, colon, or stomach cancer) or non-small cell lung cancer. EF5 may be effective in measuring oxygen in tumor tissue. Photosensitizing drugs such as motexafin lutetium are absorbed by tumor cells and, when exposed to light, become active and kill the tumor cells. Knowing the level of oxygen in tumor tissue and the level of motexafin lutetium absorbed by tumors and normal tissue may help predict the effectiveness of anticancer therapy
This randomized phase III trial is comparing the effectiveness of three adjuvant combination chemotherapy regimens in treating patients who are receiving radiation therapy and fluorouracil either before or after surgery for stage II or stage III rectal cancer. Drugs used in chemotherapy, such as irinotecan, fluorouracil, leucovorin, and oxaliplatin, use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. It is not yet known which adjuvant combination chemotherapy regimen is more effective in treating patients who are receiving radiation therapy and fluorouracil either before or after surgery for rectal cancer.
This phase I trial is studying the side effects and best dose of giving 7-hydroxystaurosporine together with irinotecan hydrochloride in treating patients with metastatic or unresectable solid tumors, including triple-negative breast cancer (currently enrolling only patients with triple-negative breast cancer since 6/8/2007). Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving 7-hydroxystaurosporine together with irinotecan hydrochloride may help kill more cancer cells by making tumor cells more sensitive to the drug.
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells
Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy
This phase I trial studies the side effects and best dose of fluorouracil when given together with radiation therapy followed by combination chemotherapy before and after surgery in treating patients with rectal cancer that has spread from where it started to nearby tissue or lymph nodes. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as fluorouracil, leucovorin calcium, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving additional combination chemotherapy after surgery may kill any remaining tumor cells. Giving radiation therapy and fluorouracil followed by combination chemotherapy before and after surgery may be a better treatment for rectal cancer.
This phase II trial studies how long it takes colorectal cancer resistant to standard treatment to grow while receiving treatment with ziv-aflibercept, and how well adding fluorouracil and leucovorin calcium to ziv-aflibercept works in treating patients with stage IV colorectal cancer after they progress on ziv-aflibercept alone. Ziv-aflibercept may stop the growth of colorectal cancer by blocking the formation of tumor blood vessels. Fluorouracil and leucovorin calcium are drugs used in chemotherapy. Fluorouracil works to stop the growth of tumors cells by preventing the cells from growing and dividing. Leucovorin calcium helps fluorouracil work better. Adding fluorouracil and leucovorin calcium to ziv-aflibercept may be an effective treatment for patients who progress on ziv-aflibercept alone.
This pilot phase I trial studies the side effects and best dose of CPI-613 when given together with fluorouracil in treating patients with colorectal cancer that has spread to other parts of the body and cannot be removed by surgery. CPI-613 may kill tumor cells by turning off their mitochondria. Mitochondria are used by tumor cells to produce energy and are the building blocks needed to make more tumor cells. By shutting off these mitochondria, CPI-613 deprives the tumor cells of energy and other supplies that they need to survive and grow in the body. Drugs used in chemotherapy, such as fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 with fluorouracil may kill more tumor cells.
This research trial studies genetic mutations in blood and tissue samples to see if they can be used to predict treatment response in patients with locally advanced rectal cancer undergoing chemoradiation. Studying samples of blood and tumor tissue in the laboratory from patients with cancer may help doctors learn more about genetic mutations or changes that occur in deoxyribonucleic acid (DNA) and help doctors understand how patients respond to treatment.
This phase I trial studies the side effects and best dose of irinotecan-eluting beads in treating patients with colon or rectal cancer that has spread to the liver and does not respond to treatment with standard therapy. Irinotecan-eluting beads are tiny beads that have been loaded with irinotecan hydrochloride, a chemotherapy drug. Drugs used in chemotherapy, such as irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or stopping them from dividing. This treatment delivers the chemotherapy directly to the tumor area inside the liver instead of to the whole body as with systemic delivery of the drug. Irinotecan-eluting beads may work better that standard chemotherapy in treating patients with colon or rectal cancer that has spread to the liver.
This phase I trial studies the side effects and best dose of MEK inhibitor MEK162 when given together with leucovorin calcium, fluorouracil, and oxaliplatin in treating patients with advanced metastatic colorectal cancer. MEK inhibitor MEK162 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162 with leucovorin calcium, fluorouracil, and oxaliplatin may kill more tumor cells.
This pilot clinical trial studies comprehensive gene sequencing in guiding treatment recommendations in patients with metastatic or recurrent solid tumors. Studying samples of blood and tissue from patients with cancer in the laboratory may improve the ability to plan treatment.