7 Clinical Trials for Various Conditions
This phase I trial evaluates the safety and feasibility of using a reduced-intensity regimen of cyclophosphamide, pentostatin, and anti-thymocyte globulin prior to a CD4+ T-cell depleted haploidentical hematopoietic cell transplant (haploHCT) for the treatment of patients with severe aplastic anemia that does not respond to treatment (refractory) or that has come back (recurrent). Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid. It may also lower the body's immune response. Pentostatin blocks a protein needed for cell growth. Anti-thymocyte globulin is an immunosuppressive drug can destroy immune cells known as T-cells. HaploHCT transfers blood-forming stem cells from a healthy partially-matched donor to a patient. Administering a regimen of cyclophosphamide, pentostatin, and anti-thymocyte globulin before haploHCT may help make room for the new, healthy cells and may reduce the risk of graft versus host disease.
This is a phase II, open label, multi-center, intra-patient dose escalation study to characterize the pharmacokinetics (PK) after oral administration of eltrombopag in combination with immunosuppressive therapy in pediatric patients with previously untreated or relapsed/refractory severe aplastic anemia or recurrent aplastic anemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Umbilical cord blood transplantation may be able to replace cells destroyed by chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy followed by umbilical cord blood transplantation in treating patients who have hematologic cancer or severe aplastic anemia.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
New conditioning regimens are still needed to maximize efficacy and limit treatment-related deaths of allogeneic transplantation for advanced hematologic malignancies. Over the past several years, the investigators have evaluated several new conditioning regimens that incorporate fludarabine, a novel immunosuppressant that has limited toxicity and that has synergistic activity with alkylating agents. Recent data have suggested that fludarabine may be used in combination with standard doses of oral or IV busulfan, thus reducing the toxicity previously observed with cyclophosphamide/ busulfan regimens.
Objectives: 1. To evaluate disease free survival after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies. 2. To evaluate the incidence and severity of acute and chronic GVHD after Campath 1H-based in vivo T-cell depletion, in patients with hematologic malignancies undergoing non-myelo-ablative stem cell transplantation. 3. To evaluate engraftment and chimerism after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening